Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Notes de cours

Collegeaantekeningen leren en geheugen (5102LEGE9Y) Week 7

Note
-
Vendu
-
Pages
43
Publié le
08-07-2023
Écrit en
2021/2022

Een uitgebreide en overzichtelijke samenvatting van de hoorcolleges uit week 7 voor deeltentamen 2 van het vak Leren en Geheugen van de studie Psychobiologie aan de UvA ().

Établissement
Cours











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Livre connecté

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Publié le
8 juillet 2023
Nombre de pages
43
Écrit en
2021/2022
Type
Notes de cours
Professeur(s)
Lansink
Contient
De hoorcolleges uit week 7

Sujets

Aperçu du contenu

HC aantekeningen Week 7
Quizlet link: https://quizlet.com/Annabel2703/folders/leren-en-geheugen/sets



Inhoud
College 17: Computational models of learning and memory (part II) .............................................................................. 2
College 18: De ziekte van Alzheimer en dementie ......................................................................................................... 15
College 19: Geheugen consolidatie & reorganisatie ....................................................................................................... 32

,College 17: Computational models of learning and memory (part II)
➢ Synapsen belangrijk voor leren, dus dat moet je goed kunnen simuleren
❖ Recap:
➢ basic ideen voor modelling, hoe
kunnen we individuele neuronen
modelleren op verschillende
niveaus?
➢ We covered 3 models, 3 levels:
Hodgkin-Hodgkin-Huxley (most
biophysical, currents), Izhikevich
(little more simplified), Leaky
integrate-and-fire model (most
simple but useful for basic
features, used during workshop).
❖ How are models of learning implemented
in these neural network models?

Models of learning and memory

❖ Now that we can simulate a neuron, we can start looking at learning rules
❖ We can classify the learning strategies of the brain in three main categories, which can also be used in
artificial approaches of learning.
➢ Unsupervised learning: We can classify the learning strategies of the brain in three main
categories,
▪ input from outside world -> activity between input and layer x is the main thing that
changes the output?
▪ nothing that oversees how the network learns and performs, free, unsupervised





➢ Supervised learning: the neural network receives input from the outside world and also the
desired output, so that the network can change its synaptic weights to reach such output.
▪ input en output vergelijken -> weights aanpassen





➢ Reinforcement learning: the neural network receives input from the outside world, and a
reward/punishment teaching signal which bias the learning towards a desired output.
▪ extension van supervised learning, teaching signal. Het signaal is niet de desired outpu
die we willen, niet een erg specifiek signaal maar een beloning/straf.

, ▪
▪ (Ik vraag me af: krijg je dus als netwerk alleen te horen ‘je deed het verkeerd’ of krijg je ook een richting
aangegeven zoals ‘je uitkomst was te laag’, of is dat meer supervised learning?)
❖ Biological examples:
➢ Unsupervised learning: for example, receptive fields.
➢ Supervised learning: links with biological mechanisms still unclear. A good candidate is
learning in the cerebellum (teaching signals).
➢ Reinforcement learning: classical conditioning.




Unsupervised learning

❖ Unsupervised learning is a learning process in which synaptic weights change as a function of the
inputs (and internal activity) only.
❖ Simplicity and plasticity -> good for experiments, computational pov
❖ It is therefore easy to map this process to the learning of biological neural systems and changes in
biological synapses.
❖ The first biological principle of synaptic changes associated with learning is the Hebb’s principle:
“Neurons that fire together, wire together.
❖ “Neurons that fire together, wire together”- Donald Hebb




➢ ->




➢ -> ->




➢ ->




➢ ->
➢ Synaptisch weight increases

, ➢ “WHEEL” reminds us of the car
➢ Activation of neuron -> activation of neuron connected by stronger synapse
❖ This principle allows to recover neural activity patterns, or neural assemblies, from incomplete or
noisy data, leading to the concept of associative memory.
➢ This happens without any kind of supervision from external agents.





❖ We can consider a variety of learning rules to train neural networks in an unsupervised way.
➢ Some of these rules come from biology (i.e. refined versions of the Hebb rule, or other different
rules also found in synapses).
➢ Other rules can be considered on the basis of their theoretical and computational properties
(such as stability, simplicity or fast training times).
➢ We will cover several classical learning rules used in unsupervised learning
❖ thepricial principes for guidelines
❖ The BCM rule:
➢ formulated by Elie Bienenstock, Leon Cooper and Paul Munro in 1982. It attempts to explain
learning in the visual system.
➢ This rule is an extension of the Hebb rule (but for continuous values) which solves two
important aspects of the stability problem of the Hebb rule. (Hebb would make the synapses
either stronger and stronger, or weaker and weaker, but we want something more stable)
➢ More precisely, the BCM rule adds

▪ (i) a leaky term to incorporate depression and make unused synapses weaker,
▪ and (ii) a sliding threshold to balance potentiation with depression and prevent

runaway increase of synaptic weights
➢ Equation:





▪ temporal evolution of wij: synaptic weight between neurons i
and j
▪ with φ(x) is the sigmoidal function, which imposes a cap in the increase of the synaptic
weight.
▪ This function introduces a sliding threshold (𝜃!), which provides the stability factor
missing in the standard Hebb rule.
▪ The leaky term provides a long-term depression mechanism
€5,49
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien


Document également disponible en groupe

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
Annabel2703 Universiteit van Amsterdam
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
14
Membre depuis
4 année
Nombre de followers
6
Documents
20
Dernière vente
6 mois de cela

0,0

0 revues

5
0
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions