Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4,6 TrustPilot
logo-home
Examen

Prove that the set of fixed points of a linear transformation T V r

Note
-
Vendu
-
Pages
1
Grade
A
Publié le
27-06-2023
Écrit en
2022/2023

Prove that the set of fixed points of a linear transformation T : V rightarrow V is a subspace of V. Solution Dear William, In order to show that a subset P of a vector space V is a subspace of that vector space, we must show three things. First of all we must show that the 0 vector is contained in P. Secondly, we must show that if v and w are in P, then v+w is in P also. Finally we must show that if v is in P and c is a scalar, then cv is in P. The last two conditions are summarized by saying that P is closed under the taking of linear combinations. If these three conditions are satisfied, then P will be a subspace. So now I begin the proof. First of all, the zero vector 0 is a fixed point because all linear transformations map the zero vector to the zero vector of the image space, which is the same as the domain space in this case. Thus T(0) =0. Thus zero is a fixed point. As to the second part, assume that v and w are fixed points. Then we wish to show that v+w is also a fixed point. By definition T(v) -> v and T(w)- >w. Furthermore, since T is a linear transformation we have T(v+w) = T(v)+T(w) = v+w. Thus v+w is a fixed point if v and w are. Finally, let us assume that v is a fixed point and that c is a scalar. Then we wish to show that cv is also a fixed point. We have T(cv) = cT(v) = cv, since Tis linear and v is a fixed point. Thus we have shown that the set of fixed points contains the zero vector and is closed under the taking of linear combinations. Thus the set of fixed points of a linear transformation T: V->V is a subspace of V. I hope that this helps!! David

Montrer plus Lire moins
Établissement
Cours








Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Cours

Infos sur le Document

Publié le
27 juin 2023
Nombre de pages
1
Écrit en
2022/2023
Type
Examen
Contient
Questions et réponses

Sujets

Aperçu du contenu

Prove that the set of fixed points of a linear transformation T : V rightarrow V is a subspace of
V.


Solution


Dear William,


In order to show that a subset P of a vector space V is a subspace of that vector space, we must
show three things. First of all we must show that the 0 vector is contained in P. Secondly, we
must show that if v and w are in P, then v+w is in P also. Finally we must show that if v is in P
and c is a scalar, then cv is in P. The last two conditions are summarized by saying that P is
closed under the taking of linear combinations. If these three conditions are satisfied, then P will
be a subspace.
So now I begin the proof.
First of all, the zero vector 0 is a fixed point because all linear transformations map the zero
vector to the zero vector of the image space, which is the same as the domain space in this case.
Thus T(0) =0. Thus zero is a fixed point. As to the second part, assume that v and w are fixed
points. Then we wish to show that v+w is also a fixed point. By definition T(v) -> v and T(w)-
>w. Furthermore, since T is a linear transformation we have T(v+w) = T(v)+T(w) = v+w. Thus
v+w is a fixed point if v and w are. Finally, let us assume that v is a fixed point and that c is a
scalar. Then we wish to show that cv is also a fixed point. We have T(cv) = cT(v) = cv, since Tis
linear and v is a fixed point. Thus we have shown that the set of fixed points contains the zero
vector and is closed under the taking of linear combinations. Thus the set of fixed points of a
linear transformation T: V->V is a subspace of V.
I hope that this helps!!
David
€6,99
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
meejuhaszjasmynspe52866

Faites connaissance avec le vendeur

Seller avatar
meejuhaszjasmynspe52866 Self
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
0
Membre depuis
2 année
Nombre de followers
0
Documents
338
Dernière vente
-

0,0

0 revues

5
0
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions