Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Summary Actuarial Statistics - 2006 Past Paper with Solutions

Note
-
Vendu
-
Pages
16
Publié le
06-05-2023
Écrit en
2006/2007

University of Cambridge - Part III Mathematics/Certificate of Advanced Study in Mathematics/Masters of Mathematics • Actuarial Statistics: course notes, based on lectures by Susan Pitts, covering aggregate claims, reinsurance, ruin probabilities, no-claim-discount systems, credibility theory and run-off triangles. Solutions to the 2006 paper.

Montrer plus Lire moins
Établissement
Cours










Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Cours

Infos sur le Document

Publié le
6 mai 2023
Nombre de pages
16
Écrit en
2006/2007
Type
Resume

Sujets

Aperçu du contenu

Actuarial Statistics – 2006 Paper Page 1 of 16


Actuarial Statistics – 2006 Paper
Question 1




We begin by noting that since the claim sizes cannot be 0,
g 0 = (N = 0) = p0 = 0 .


We also note that for the compound distribution to have a value of 1, we
must have a single claim, with a value of 1. So g1 = f1p1 . This will be the basis
for our recursion formula.


Now, mutiply the condition in the question by zn and sum, to get
¥ ¥ æ bö
å n p z n
= å z n ççèça + n ÷÷ø÷÷ pn-1
n =1 n =1
¥ ¥ ¥
zn
å pn z - p0 = å azz pn-1 + b å n pn-1
n n -1

n =0 n =1 n =1
¥ ¥
zn
GN (z ) - p0 = az å z pn + b å pn -1
n

n =0 n =1 n
¥
zn
(1 - az ) N
G (z ) = p 0
+ b å n pn-1
n =1

Differentiating with respect to z
-aGN (z ) + (1 - az )GN¢ (z ) = bGN (z )
a +b
GN¢ (z ) = G (z )
1 - az N


Now, let


Daniel Guetta, 2010

,Actuarial Statistics – 2006 Paper Page 2 of 16

¥
GS (z ) = å gn z n
n =0

We have M S (u ) = GN (M X (u )) , and we also know that G (z ) = M (log z ) , so
GS (z ) = M S (log z ) = GN (M X (log z )) = GN (GX (z ))
Differentiating, we get
GS¢ (z ) = GN¢ (GX (z ))GX¢ (z )
a +b
= G (G (z ))GX¢ (z )
1 - aGX (z ) N X
a +b
= G (z )GX¢ (z )
1 - aGX (z ) S
So
(1 - aG X
(z ))GS¢ (z ) = (a + b)GS (z )GX¢ (z )
We now feed in the fact that [note: the second sum goes from 1 instead of 0
because f0 = 0]
¥ ¥
GS (z ) = å gn z n GX (z ) = å fk z k
n =0 n =1

And get
æ ¥ öæ ¥ ö
b -1 ÷
æ¥ öæ ¥ ö
çç1 - a
å f z a ÷ç
÷
÷ ç å b g z ÷
÷ = (a + b ) ç
ç å g z ÷÷ çå b fb z b -1 ÷÷÷
a ֍
ççè a
a=1
÷ø çèç b =1
b
÷ø çèç a
a =0
÷ø ççè b =1
÷ø
Now, equate coefficients of zr – 1
rgr - a å b fag b = (a + b) å bg a fb
a +b =r a +b =r
r -1 r
rgr - a å (r - a)fagr -a = (a + b)å b fb gr -b
a =1 b =1

And so
r r -1
rgr = å (a b + b b )fb gr -b + å (ar - a a)fagr -a
b =1 a =1
r -1
= å (ar + b b )fb gr -b + (ar + br )fr g 0
b =1
r
= å (ar + b b )fb gr -b
b =1

Which means that
r æ
bj ö
gr = å çça + ÷÷÷ fj gr -j
ç
j =1 è r ÷ø
This is our recursion formula for the g, starting from g1 = f1p1 .


Let us find a and b when


Daniel Guetta, 2010

, Actuarial Statistics – 2006 Paper Page 3 of 16


e -lln
pn =
(1 - e ) n !
-l



Note that
e -lln -1
pn -1 =
(1 - e )(n - 1)!
-l



And so
b p
a+ = n
n pn -1
e -lln

=
(1 - e ) n !
-l


e -ll n -1
(1 - e )(n - 1)!
-l


l
=
n
And so a = 0 and b = l . Our recursion formula becomes
r
lj
gr = å fg
j =1 r j r -j
Starting from g1 = f1p1 .




Daniel Guetta, 2010
€3,08
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
tandhiwahyono
2,0
(1)

Faites connaissance avec le vendeur

Seller avatar
tandhiwahyono University of Indonesia
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
8
Membre depuis
3 année
Nombre de followers
8
Documents
861
Dernière vente
1 année de cela
iKnow

The iKnow store provides course materials, study guides, study notes, lecture notes, textbook summaries and exam questions with answers, for levels from high school students to universities and professionals. Everything with the best quality and world class.

2,0

1 revues

5
0
4
0
3
0
2
1
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions