Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Summary Stochastic Processes II - Lecture Notes

Note
-
Vendu
-
Pages
28
Publié le
06-05-2023
Écrit en
2010/2011

Columbia Business School - First Year of the Doctoral Program in Decisions, Risk and Operations • Stochastic processes o Notes from Prof Assaf Zeevi's "Foundations of Stochastic Modelling". o Notes from Prof David Yao's "Stochastic Processes II".

Montrer plus Lire moins
Établissement
Cours










Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Cours

Infos sur le Document

Publié le
6 mai 2023
Nombre de pages
28
Écrit en
2010/2011
Type
Resume

Sujets

Aperçu du contenu

Stochastic Processes II Page 1



STOCHASTIC PROCESSES II

PART I – MARTINGALES


Conditional expectations
 Measure theory
o In a probability space (W,  , ) , a sigma field  is a collection of events, each of
which as a subset of W . It satisfies (i) Æ Î  (ii) A Î   Ac Î  (iii)
Ai Î   Èi¥=1 Ai Î  . Notes:
 (i) and (ii)  W Î 

( )
c
¥ ¥
  A =
i =1 i
Ac , so also closed under infinite (and finite) intersection.
i =1 i


o A random variable maps X (w) : W   . When we say X is measurable with
respect to  and write X Î  , we mean {w : X (w) £ x } Î  "x .

 Conditional expectations
o (X | Y ) is a random variable. (X | Y )(w) =  (X | Y = Y (w)) . In other words,

the fact Y = Y (w) “reveals” a “region” of W in which we are located. We then
find the expected value of X given we are in that “region”.
 In terms of the definition below, we can write (X | Y ) = (X | s(Y )) ,
where s(Y ) is the sigma-field generated by Y – in other words,

s(Y ) = {{w : Y (w) £ x } : x Î } – every event can would be revealed by

Y.
o W = (X | ) is a random variable. (X | )(w) is a bit harder to understand –
effectively, it takes the expectation of X over the smallest  that contains w . In
other words, let A be the smallest element of  that contains w – then we
restrict ourselves to some region of W and find the expectation over that region;
(X |  )(w) = (X A ) . Formal properties:




Daniel Guetta

,Stochastic Processes II Page 2


 W Î  : information as to where we are in W only ever “reaches” us via
knowledge of which part of  we’re in, so this is obvious.
  (W A ) =  (X A ) for all A Î  : we are now restricting ourselves to a

region of W that is  -measurable. Provided A is the smallest element for
which w Î A , W (w) = (X A ) , and the result follows trivially. (If it is
not the smallest element, the result requires additional thought).
o Some properties
i.  éêëX |  ùúû if X Î 

ii.  éê  éêëX |  ùúû ùú = (X )
ë û
iii.  (XZ |  ) = Z  (X |  ) if Z Î 

iv. Tower:  éê  (X |  ) |  ùú =  (X |  ) if  Í  : in this case,  is “more
ë û
descriptive” than  , so the result makes sense.

( ( ) )
Proof: Use    (X |  ) |  A =   (X |  ) A ( ) for A Î  . Then use

the fact that A Î  to show this is equal to  (X A ) . 

v. Linearity

(
vi. Jensen’s: for convex f,  éêë f (X ) |  ùûú ³ f  éêëX |  ùúû )
o Notes
  éêëX ùúû =  éêëX | {Æ, W}ùúû (the RHS is a constant, because whatever w we

choose, the only element of {Æ, W} that contains it will be W ). Thus, (ii)
is a special case of (iv).
 Integrability of X implies integrability of  éêëX |  ùûú :
(vi) (ii)
 
é
ë
ù
û ë (
 ê (X |  ) ú £  éê  X |  )ù =  X
ûú ( )
o Example: Let W be countable. Let  = {1 , 2 , } be a partition of W , and 
å w Î i X ( w )( w )
be the set of all subsets of  . Then (X |  ) takes value ( i )
with

probability (i ) .




Daniel Guetta

, Stochastic Processes II Page 3


Proof: Clearly, the RV is  measurable, because each value it can take is

defined by a i . Also,  éêë (X | )A ùûú is the expected value over those i Í A .

Clearly, =  éëêX A ùûú . 



Martingales
 Definition: {Xn } is a sub-martingale with respect to {n } (where n Î n+1 ) if
i. X n Î n
ii. (X n ) < ¥ [it is often convenient to work with the stronger condition

 Xn < ¥ ].

iii.  éëêXn +1 | n ùûú ³ Xn [< gives a super-martingale, = gives a martingale]. Implies the

weaker property  éêëXn +1 ùûú ³  éëêXn ùûú

 Remarks:
o A convex function of a martingale is a submartingale.
o An increasing convex function of a submartingale is a submartingale.
Proof: (i) and (ii) are simple.  éêë f (Xn +1 ) | n ùúû ³ f ( [Xn +1 | n ]) ³ f (Xn ) . 

å
n
 Example: Let S n = i =1
X i , where the Xi are IID with (Xi ) = 0,  Xi < ¥
o Sn is a martingale [  Sn £ n  X1 ] (the mean martingale).

o If ar(X i ) = s 2 < ¥ , X n2 - s 2n is a martingale (the variance martingale). 
qX1 qSn
 Example (the exponential martingale): Let j(q) = (e ) . Mn = e / jn (q) is a

å
n
martingale. For example, if S n = i =1
Xi is an asymmetric random walk with

( )
Sn
1-p
p = (X i = 1) = 1 - (X i = -1) , then M n = p
is an exponential martingale, with
1-p
eq = p
and j(q) = 1 . 
 Example: Suppose an urn starts with one black and one white ball. We pull out balls
from the urn, and return them to the urn with another, new ball of the same color. Yn,
the proportion of white balls after n draws, is a martingale (mean ½). 
 Example: Let {Xn } be a Markov Chain with transition matrix P(x, y) and let h(x) be a
bounded function with h(x ) = å y p(x, y )h(y ) . {h(Xn )} is then a martingale. 




Daniel Guetta
€2,62
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
tandhiwahyono
2,0
(1)

Faites connaissance avec le vendeur

Seller avatar
tandhiwahyono University of Indonesia
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
8
Membre depuis
3 année
Nombre de followers
8
Documents
861
Dernière vente
1 année de cela
iKnow

The iKnow store provides course materials, study guides, study notes, lecture notes, textbook summaries and exam questions with answers, for levels from high school students to universities and professionals. Everything with the best quality and world class.

2,0

1 revues

5
0
4
0
3
0
2
1
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions