Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4,6 TrustPilot
logo-home
Resume

Samenvatting Differentiëren

Note
-
Vendu
3
Pages
17
Publié le
18-01-2023
Écrit en
2022/2023

Dit is een samenvatting voor het vak differentiëren gegeven aan de hva (en alle andere opleidingen tot leraar wiskunde) in de samenvatting wordt ingegaan op H2,3 en 4 van Steward de handout van differentiëren met extra informatie

Montrer plus Lire moins
Établissement
Cours










Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Livre connecté

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Livre entier ?
Non
Quels chapitres sont résumés ?
Hoofstuk 2 t/m 4
Publié le
18 janvier 2023
Nombre de pages
17
Écrit en
2022/2023
Type
Resume

Sujets

Aperçu du contenu

Omvattend

Stewart, J. Calculus, Early Transcendentals, Metric Version, negende druk (ISBN:9780357113516)

- Hoofdstuk 2 (m.u.v. 2.4)
- Hoofdstuk 3 (3.1 tot en met 3.6 m.u.v. 3.5)
- Hoofdstuk 4 (4.1 4.3 4.5 4.7)

Hand-out differentiëren HVA

,Hoofdstuk 2

2.1
tangent = raaklijn

een raaklijn kan je vinden door (∆Y : ∆X)

voor snelheid doe je s = v x t (plaats = snelheid x tijd)



2.2
Bestaat x voor een bepaalde waarde niet (bijvoorbeeld bij een breuk) en je wilt daar wel de y waarde
weten. Dan gebruik je een limiet

Vb (x-1) / (x^2 -1)

Je wilt weten x=1

Maak 2 tabellen. 1 met waardes steeds dichter naar 1 vanaf onder, en een vanaf boven

hier zul je zien dat de y waardes f(x) steeds dichter naar 0,5 gaan. Hoe dichter x dus naar 1 gaat hoe
dichter y bij 0,5 komt. Dit noem je het limiet voor x gaat naar 1 is een 0,5




Hierbij geld wel dat het limiet alleen bestaat als beide tabellen (dus zowel vanaf beneden als vanaf
boven) naar 0,5 gaat. Gaan ze naar 2 verschillende waarden dan bestaat het limiet niet.



Limieten kunnen ook naar oneindig (of min oneindig) gaan. Dit is zo als de limieten aan beide kanten
naar hetzelfde gaan, maar deze waarde oneindig groot kan worden)

Vb lim (x -> 0) voor 1/ (x^2)

Hoe dichter je x bij 0 kiest hoe groter de waarde van y wordt

Als x op een bepaalde waarde naar oneindig gaat dan is daar een verticale asymptoot (de grafiek kan
dan niet voorbij deze x waarde)

Verticale asymptoten kan je vinden wanneer de noemer van een breuk 0 is

, 2.3
Limiet regels




1 & 2 limieten mag je opsplitsen als er een plus of min instaat

3 staat er een constante voor het limiet dan mag je deze er buiten halen

4 & 5 limieten mag je opsplitsen als er een vermenigvuldiging of breuk instaat




Limiet regel 6

- Staat er een macht bij een limiet dan mag je ook de uitkomst van het limiet in de macht doen

Limiet regel 7

- Staat er een wortel in het limiet, dan mag je de uitkomst van het limiet in de wortel doen

Limiet regel 8 & 9

(zie foto)




Hoe vind je het antwoord van een limiet

Vb (lim (x->1) voor (x^2 -1) / (x-1)

Als we in deze formule 1 invullend dan delen we door 0 en dat mag niet

Daarom gaan we de bovenkant van de formule herschrijven naar (x-1)(x+1) dit is een merkwaardig
product.

Omdat we nu zowel boven als onder de streep (x-1) hebben, mogen we die wegstrepen.

Dan houden we over (x+1) hierin kunnen we wel x = 1 invullen
€8,49
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
sabinevanderlip

Faites connaissance avec le vendeur

Seller avatar
sabinevanderlip Hogeschool van Amsterdam
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
7
Membre depuis
2 année
Nombre de followers
3
Documents
5
Dernière vente
8 mois de cela

0,0

0 revues

5
0
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions