Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Summary Statistics 3/Statistiek 3 VU

Note
-
Vendu
2
Pages
24
Publié le
15-01-2023
Écrit en
2019/2020

Summary of the lecture notes and all other literature required for stats 3. This is the same for the clinical track and the organisational track so this summary can be used for both.

Établissement
Cours










Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Publié le
15 janvier 2023
Nombre de pages
24
Écrit en
2019/2020
Type
Resume

Sujets

Aperçu du contenu

Statistics 3
TENTAMEN/EXAM: 27 March 2020



INDEX

1. Basics and Linear regression 2
2. Variance analysis 6
3. Factorial ANOVA 9
4. Covariance analysis 13
5. Moderation and mediation 16
6. Multivariate analyses 19
7. Repeated measures 22
8. Overview table (F)AN(C)OVA 24




This summary includes (almost) everything from the lectures and the chapters from the book.




DISCLAIMER

This summary is made by a student!
Studying from it and relying on it for 100% is your own responsibility.

THANKS & GOOD LUCK!!! J
J YOU CAN DO IT!!! CA

, 2
Basics and linear regression
Warner Ch. 9

*Note. Not everything from Stats 1 and 2 is explained extensively in this recap part, since it is considered
background knowledge.

Recap Stats 1 and 2
- Statistics – the science of collecting, organizing and interpreting numerical facts (data)
o Descriptive statistics – summarizing sample or population data with numbers/tables/graphs
o Inferential statistics – making predictions about population parameters based on a (random)
sample of data
- Population – total set of participants relevant for the research question (population parameter)
- Sample – subset of population about who the data is collected (sample statistic)
- Reliability and validity
o Reliability = precision
o Validity = bias
§ 2nd one is valid (unbiased), because on average you
will still get the correct value
o Reliability and validity are essentially not linked to each
other or intertwined, but they are independent concepts

Descriptive statistics
- Variable – measures characteristics that can differ between subjects
o Measuring scales (NOIR)
§ Qualitative/categorical
• Nominal – unordered categories
• Ordinal – ordered categories
§ Quantitative/numerical
• Interval – equal distances between consecutive values
• Ratio – equal distances and true 0
§ Many researchers use Likert scales and transfer them from ordinal à interval by assigning
numbers to the categories… allowed?
o Range
§ Discrete – measurement unit that is indivisible
§ Continuous – infinitely dividable measurement unit
§ Rule of thumb = that when a discrete measure has 7 or more units, it can be considered as
continuous
- 3 important dimensions of descriptives
o Central tendency – typical observation (mean, mode (most frequent), median (middle observation)
§ Also: mean is not always the best measure (e.g. if distribution is skewed)
o Dispersion – gives info about the extent to which a distribution is stretched or squeezed (standard
deviation, variance, interquartile range)
o Relative position measures – gives info about the relative position of observations (percentile,
quartile)

Inferential statistics
- We want to have reliable and valid statements about the population based on sample: sample statistic
(in ideal world) should not differ from population parameter
o Problems with this:
§ Sampling error random sample differences

, 3
§ Sampling bias bias due to selective sample
§ Response bias bias due to incorrect answer
§ Non-response bias bias due to non-response (missings)
o You want to avoid bias by all means. You cannot actively avoid error. We can minimize error by
having a large sample (N). N does not influence bias!
o Solution = A random (or other probability) sampling approach of sufficient size that generates data
for everyone approached, with correct responses on all items for all subjects.
- 3 distributions
o Population distribution – how is the variable actually distributed in the population
o Sample data distribution – how is the data distributed in the sample we drew
o Sampling distribution – the probability for the sample statistic, e.g. the mean
§ The mean of this distribution is then the mean of all the sample means. = best estimation of
population parameter
§ Shows us how the statistic behaves from sample to sample
§ Standard deviation of this distribution = standard error
• Less variability in the sampling distribution than in the population distribution
• Less variability in the sampling distribution
when you draw bigger samples
- Central Limit Theorem: no matter the population
distribution, if you have a large enough sample size, the
sampling distribution will be normally distributed
o This is a necessary assumption for e.g. calculating CI
and p-values
o Empirical rule for normal distribution
o 68% within ± 1 𝜎 of the mean
o 95% within ± 2 𝜎 of the mean
o Almost 100% within ± 3 𝜎 of the mean
- Types of distributions
o (Standard-) normal distribution (Z-distribution)
§ Sampling distribution of a proportion if H0 applies
§ Sampling distribution of a mean if H0 applies and if
the population sd is known
§ In figure: the black distribution is the standard normal
o Student’s t-distribution
§ Sampling distribution of a mean if H0 applies and if
the population sd is unknown (which is basically
always)
§ Sampling distribution of a regression coefficient if H0
applies
§ In figure: you can see the different t-distributions for different sample sizes (n’s)
• Here you see, as the sample size increases, the t-distribution starts to resemble the z-
distribution more and more
• Can also see this in the t-table: last row in t-table (df = infinite), you see that these numbers
are the same as the ones in the z-table
§ In the T-distribution, we assume we do not know the standard deviation à we estimate it using
sample standard deviation
• Extra estimate of s à more uncertainty à more difficult to reject H0 à use df = n-1
• DF refers to the number of observations that are free to vary. You lose 1 df for each sample
statistic you incorporate.
€8,49
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien


Document également disponible en groupe

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
evabus Vrije Universiteit Amsterdam
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
70
Membre depuis
7 année
Nombre de followers
45
Documents
19
Dernière vente
1 mois de cela

5,0

5 revues

5
5
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions