Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Summary Computational Neuroscience & Neuroinformatics

Vendu
15
Pages
211
Publié le
13-01-2023
Écrit en
2021/2022

Extensive summary of the course Computational Neuroscience & Neuroinformatics Includes the part of prof. Adhikari, prof. De Vos and prof. Bruffaerts - Frequency Analysis, Filtering, Convolution, Principal Component Analysis, Independent Component Analysis - Analysis of task based functional magnetic resonance imaging - Analysis of dynamic functional connectivity from resting state fMRI data - In-vivo imaging and whole brain imaging - Neural networks

Montrer plus Lire moins











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Infos sur le Document

Publié le
13 janvier 2023
Nombre de pages
211
Écrit en
2021/2022
Type
Resume

Sujets

Aperçu du contenu

COMPUTATIONAL NEUROSCIENCES

1. Introduction, Overview & Foundations of Neurodynamics
Introduction
Why study brain ?

• Brain is probably the most complex and yet interesting organ of the body.
• Fundamental understanding of structure, interaction between different parts and the function
of the brain.
• Brain is a high-dimensional complex network.
o Focal stroke, not just the output of the directly affected neurons will be disturbed
o Not: 1 brain region - 1 function
• Several brain disorders have now been identified
o Epilepsy, stroke, neurodegeneration, Schizophrenia, Autism that need to be better
understood to identify treatment strategies.
• Brain can be studied at several scales: molecular, cellular, microcircuit, population, and
system level to behaviour.
• Opens up possibilities to develop novel methods of probing the brain at different scales as well
as analysing complex datasets. (e.g. optogenetics)



Complexity of the brain

• Brain is made up of predominantly neurons, but also microglia
o Microglia: energy supply & structural stabilization of brain tissue
• 1011 neurons; 1015 synapses/connections; each neuron receives ~10000 synapses from other
neuron.
• Many different types of neurons exist in terms of size, shape and molecular properties.
• Neurons communicate via electrical impulses, called action potentials.
o Frequency and rate will depend on type of neuron and input it receives

Overview
Overview: Neurons




- Dendrites: ‘input device’ receives input from other neurons, transmit them to the soma
- Soma; ‘central processing unit’: integrates info by nonlinear processing step, if total input
arriving at soma exceeds the threshold, then an output signal is generated
- Axon: ‘output device’: ~wire, carries electrical signal to other neurons

1

,Overview generation of an AP
- Different concentrations on both sides of the cell → ° potential difference (=membrane potential)
- When potential differences decreases to certain level → neuron fires
o Depolarization will depend on the input the neuron receives from other neurons
- Neural signal of a single neuron consists of short electrical pulses (spike train)
o Each pulse = AP/spike
o AP amplitude = 100mV, duration = 1-2ms
o Form of the AP does not change




Overview: simple Neuron Model




Overview: Spikes and Subtreshold regime




• Output
o Spikes= AP are rare events
▪ Exc. Bursting neurons fire more spikes at a time (=interneurons?) but afterwards
they will be silent, and the potential will be subthreshold again
o Are triggered at tresholds

• Below threshold = subthreshold regime
o The membrane potential fluctuates, if it reaches a threshold it fires an AP

2

, - Subthreshold fluctuations before AP




Foundations of Neurodynamics
1.1.1. A simple Neuron Model
The passive membrane

• The passive membrane doesn’t generate spikes
• Focus on subthreshold regime, Everything is linear
• The simplest model of a passive membrane = RC circuit
o R = resting membrane resistance + intracellular axial resistance along axons & dendrites
o C= membrane capacitance (in parallel with membrane resistance)e
➔ 3 passive electrical properties of neurons
•  Active membrane responses = responses that occur whenever ion channels are gated by
channels r chemicals




Fig 1: the EPSP caused by the arrival of a spike from
neuron jj at an excitatory synapse of neuron ii.




The cell membrane acts like a
capacitor in parallel with a resistor
which is in line with a battery of
potential Urest (zoomed inset).
If the driving force vanishes, the
voltage across the capacitor is
given by the battery voltage urest



See movies Neuronal Dynamics
3

, -------------------------------------------------------------------------

Post-synapticpotential
❖ The timecourse of ui (t) of the membrane potential of neuron i
• With electrode we can measure the potential difference u(t) between in & out = membrane
potential
o Without input → neuron is at rest → constant membrane potential urest
• Before the input ui(t)=urest .
• At t=0 the presynaptic neuron j fires its spike. For t>0, we see at the electrode a response of
neuron i arrives
𝑢𝑖 (𝑡) − 𝑢𝑟𝑒𝑠𝑡 =: ∈𝑖𝑗 (𝑡)
o The right part of the equation defines the postsynaptic potential (PSP

• If the voltage difference 𝑢𝑖 (𝑡) − 𝑢𝑟𝑒𝑠𝑡 is positive/ negative we have an excitatory/inhibitory
postsynaptic potential, EPSP/ IPSP

See figure 1

--------------------------------------------------------------------------

Can we describe u(t) in response to/ in function of an input current I(t)?
❖ U(t) for an input I(t)
• The input current I(t) (coms from another neuron) gets divided over the capacitor & the resistor :
𝑰 = 𝑰𝑪 + 𝑰𝑹
o 𝑰𝑪 ?
𝑄
▪ 𝐶=
𝑢
Capacitor = constant,
𝑄
▪ 𝑈= Q = charge over the capacitance, will change as the current comes in
𝐶
𝑑𝑢 𝐼 𝑑𝑄
▪ = dq/dt = I
𝑑𝑡 𝐶 𝑑𝑡
𝑑𝑢 𝐼𝑐
▪ =
𝑑𝑡 𝐶
𝑑𝑢
▪ 𝐼𝑐 = 𝐶 ∗
𝑑𝑡


o 𝑰𝑹 ?
(𝑢−𝑢𝑟𝑒𝑠𝑡 )
▪ 𝐼𝑅 = Ohm’s Law: V=IR
𝑅



o 𝑰 = 𝑰𝑪 + 𝑰𝑹
𝑑𝑢 (𝑢−𝑢𝑟𝑒𝑠𝑡 )
▪ 𝐼= 𝐶∗ +
𝑑𝑡 𝑅
𝐶𝑑𝑢 −(𝑢−𝑢𝑟𝑒𝑠𝑡 )
 = +𝐼
𝑑𝑡 𝑅

𝑑𝑢
𝑅𝐶 = −(𝑢 − 𝑢𝑟𝑒𝑠𝑡 ) + 𝑅𝐼
𝑑𝑡


= Equation of a passive membrane
= Linear Ordinary Differential equation
= RC equation to membrane potential changes as a function of the input current


4
€7,99
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Reviews from verified buyers

Affichage de tous les 2 avis
1 année de cela

2 année de cela

3,0

2 revues

5
1
4
0
3
0
2
0
1
1
Avis fiables sur Stuvia

Tous les avis sont réalisés par de vrais utilisateurs de Stuvia après des achats vérifiés.

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
Katriendc Universiteit Antwerpen
Voir profil
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
44
Membre depuis
8 année
Nombre de followers
16
Documents
0
Dernière vente
1 mois de cela

2,8

4 revues

5
1
4
1
3
0
2
0
1
2

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions