Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4,6 TrustPilot
logo-home
Resume

Samenvatting 'Maths in Motion' , Wiskunde voor Bewegingswetenschappen

Note
-
Vendu
3
Pages
51
Publié le
09-01-2023
Écrit en
2022/2023

Een uitgebreide samenvatting met voorbeelden van het boek Maths in Motion van Theo de Haan, 3e editie. Alle hoofdstukken met voorbeelden uitgelegd. Aan het einde van elk hoofdstuk handige opgaves uit boek, zodat je niet alles hoeft te maken, maar wel alles snapt.

Montrer plus Lire moins
Établissement
Cours












Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Publié le
9 janvier 2023
Fichier mis à jour le
9 janvier 2023
Nombre de pages
51
Écrit en
2022/2023
Type
Resume

Sujets

Aperçu du contenu

Samenvatting BW Wiskunde
Hendrik Jan, van der Kolk

December 2022




Tip:
-Aantal handige opgaves is best veel, dus als je ze niet allemaal kan maken, kijk wel ff de
antwoorden door. Klein tipje

1

,Contents
1 Differentiation 4
1.1 Basic Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Kettingregel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Partial Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Handige Opgaves: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Integration 7
2.1 Basic Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Integration by substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Integration in Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Multiple Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Handige opgaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Differential Equations 15
3.1 Kenmerken Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Solving Diffential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 Case 1: Order 1 - Linear - Homogenous . . . . . . . . . . . . . . . . . . . 16
3.2.2 Case 2: Order 1 - Linear - Inhomogenous . . . . . . . . . . . . . . . . . . 16
3.2.3 Case 3: Order 2 - Linear - Homogenous . . . . . . . . . . . . . . . . . . . 19
3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Handige opgaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Coordinates 23
4.1 2D-space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.1 Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 3D-space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.1 Spherical Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.2 Cylindrical Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Omzettingsformules in 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.1 Spherical coordinates: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.2 Cylindrical Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4.1 Polar coordinates: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4.2 Cylindrical Coordinates: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4.3 Spherical Coordinates: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5 Handige Opgaves: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Vectors 30
5.1 Algemene dingetjes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Basic Manipulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Vector Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3.1 Diffentieren: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3.2 Integreren: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4 Dot product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.5 Cross product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34


2

, 5.6 Vector Equation of a Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.7 Handige Opgaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Matrices 37
6.1 Equating two matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2 Multiplying by a number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.3 Adding and Subtracting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.4 Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.5 The Inverse Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.5.1 2x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.5.2 3x3 en hoger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.6 The Transpose Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.7 Axes Transformations and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.7.1 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.7.2 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.7.3 Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.7.4 Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.8 Multiple Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.9 Object Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.10 Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.10.1 2x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.10.2 3x3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.10.3 4x4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.10.4 3 Handige tips: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.11 Handige Opgaves: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51




3

,1 Differentiation
1.1 Basic Rules
Differentieren wordt gebruikt om de helling van een functie te bepalen

Differentieren regels:
Sum Rule: f (x) = p(x) ± g(x) → f ′ (x) = p′ (x) ± g ′ (x)
Product rule: f (x) = p(x) ∗ g(x) → f ′ (x) = p′ (x) ∗ g(x) + p(x) ∗ g ′ (x)
p(x) ′ ′ (x)
Quotient Rule: f (x) = g(x) → f ′ (x) = p (x)∗g(x)−p(x)∗g
(g(x))2

For example:
f (x) = 6x + x2 → f ′ (x) = 6 + 2x
f (x) = ex ∗ x2 → f ′ (x) = ex ∗ x2 + ex ∗ 2x
2
f (x) = 2x+1
x2 −1
→ f ′ (x) = 2∗(x −1)−2x(2x+1)
(x2 −1)2
= 2x2 −2−4x2 −2x
(x2 −1)2
= −2x2 −2x−2
(x2 −1)2

Standaard dingen om te weten:
f (x) = xn → f ′ (x) = nxn−1
f (x) = ex → f ′ (x) = ex
f (x) = loga x → f ′ (x) = x ln
1
a
f (x) = ln(x) → f ′ (x) = x1

f (x) = sin x → f ′ (x) = cos x
f (x) = cos x → f ′ (x) = − sin x
f (x) = tan x → f ′ (x) = cos12 x


1.2 Kettingregel
Stel je hebt k(x) = cos(2x), dan heb je de functie f (x) = 2x zitten in de cosinus. Dan kan je
niet meer de standaard afgeleide pakken van de cosinus. Dus moet je de kettingregel gebruiken.

Kettingregel:
k(x) = g(f (x)) → k ′ (x) = g ′ (f (x)) ∗ f ′ (x)



Dit is misschien een beetje een vage definitie, maar het wordt duidelijker met het voorbeeld:

k(x) = cos(2x)



Je ziet de 2 functies: cosinus en 2x. Even beide een naam geven:
g = cos(u) ; u = 2x

Eigenlijk heb je k(x) nu alleen anders geschreven, kijk maar: k(x) = g(u) = cos(u) = cos(2x)
En nu de afgeleide pakken van beide functies



4

, g ′ = −sin(u) ; u′ = 2

De afgeleide van k is dan volgens de kettingregel: k ′ (x) = g ′ ∗ u′ = −sin(u) ∗ 2 Er staat nu
sin(u), maar we weten wat u is, dus uiteindelijk krijg je:
k ′ (x) = −sin(2x) ∗ 2 = −2sin(2x)


Ander voorbeeld: p
k(x) = 3x2 + 2x − 1
√ 1 1
g = u = u 2 → g ′ = 12 u− 2
u = 3x2 + 2x − 1 → u′ = 6x + 2
1 1
Dus k ′ (x) = g ′ ∗ u′ = 12 u− 2 ∗ (6x + 2) = 12 (3x2 + 2x − 1)− 2 ∗ (6x + 2) = √ 6x+2
2 3x2 +2x−1

Je boek noteert het iets anders (Zie pagina 46), maar ik vind persoonlijk mijn manier sneller
en duidelijker. Maar je moet doen, wat jij het makkelijkst vindt

The second derivative, is niets meer dan de tweede afgeleide, dus de afgeleide functie nog een
keer afleiden. Voor de rest niets speciaals.


1.3 Partial Differentiation
Partial differentiation wordt gebruik, wanneer je functie depends on meer dan 1 variabele. Tot
nu depende de functie f alleen op de variabele x. Neem bijvoorbeeld z = f (x, y) dan heb je een
drie dimensionale grafiek, als je hem zou plotten. Zie figuur hieronder




Dan kan je de afgeleide in 2 richtingen bepalen. In de x-richting (linker plaatje) of in de y-
richting (rechter plaatje). Je ziet, dat als je de afgeleide in de x-richting bepaalt, dat y constant


5
€6,49
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
hjkolkvander

Faites connaissance avec le vendeur

Seller avatar
hjkolkvander Rijksuniversiteit Groningen
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
3
Membre depuis
3 année
Nombre de followers
1
Documents
1
Dernière vente
1 année de cela

0,0

0 revues

5
0
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions