Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Summary of Lectures Research Methods in Finance

Note
-
Vendu
4
Pages
59
Publié le
29-10-2022
Écrit en
2022/2023

Summary of all the lectures, organised in a convenient format.

Établissement
Cours











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Livre connecté

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Livre entier ?
Oui
Publié le
29 octobre 2022
Nombre de pages
59
Écrit en
2022/2023
Type
Resume

Sujets

Aperçu du contenu

Research Methods in Finance Lectures – University of Groningen – Joris Wellen



Research Methods in Finance
Lectures
Summary of the course’s lectures
Joris Wellen – University of Groningen


Content
Lecture 1 – A Quick Look at OLS..................................................................................................................... 3
1.1 Course Information.........................................................................................................................................3
1.2 Ordinary Least Squares (OLS).........................................................................................................................3

Lecture 2 – OLS Assumptions and Diagnostic Tests.......................................................................................11
2.1 Gauss-Markov Assumptions.........................................................................................................................11
2.2 Detecting Autocorrelation: the Durbin-Watson test....................................................................................13
2.3 Five Cases in which Assumption 4 is Not Satisfied.......................................................................................15

Lecture 3 – Dummies to the Right, Dummies to the Left...............................................................................16
3.1 Dummy Variables.........................................................................................................................................16
3.2 Dummies on the Right..................................................................................................................................16
3.3 Dummies on the Left....................................................................................................................................20

Lecture 4 – Time Series................................................................................................................................ 26
4.1 Introduction..................................................................................................................................................26
4.2 Univariate Time Series..................................................................................................................................26
4.3 Stationarity...................................................................................................................................................27
4.4 Autoregressive Models.................................................................................................................................29
4.5 Testing for Non-Stationarity.........................................................................................................................31
4.6 Financial Bubbles..........................................................................................................................................36

Lecture 5 – Modelling Volatility: ARCH, GARCH and E-GARCH.......................................................................37
5.1 Introduction..................................................................................................................................................37
5.2 Autoregressive Conditional Heteroscedasticity (ARCH) Models..................................................................38
5.3 Generalized ARCH (GARCH) Models.............................................................................................................40
5.4 The E-GARCH Model.....................................................................................................................................44

Lecture 6 – Panel Data................................................................................................................................. 45
6.1 Introduction..................................................................................................................................................45
6.2 Panel Data....................................................................................................................................................45
6.3 Fixed Effects and Random Effects................................................................................................................46
6.4 Random effects.............................................................................................................................................51


1

, Research Methods in Finance Lectures – University of Groningen – Joris Wellen

Lecture 7 – Course Recap............................................................................................................................. 54
7.1 Panel-level Heteroscedasticity.....................................................................................................................54
7.2 Panel-level autocorrelation..........................................................................................................................54
7.3 Clustered Standard Errors............................................................................................................................54
7.4 The Course....................................................................................................................................................55




2

, Research Methods in Finance Lectures – University of Groningen – Joris Wellen



Lecture 1 – A Quick Look at OLS
1.1 Course Information
Exam consists of 3rd of lecture 4.
Steffen prefers short and to-the-point answers
Steffen prefers good tables

1.2 Ordinary Least Squares (OLS)
OLS and stuff
1. A quick overview of the OLS estimator
2. How do we estimate unkown parameters in the regression model?
Ordinary leas squares (OLS).
3. What are the properties of the OLS estimator?
4. No properties without assumptions.
5. When all assumptions are correct, OLS is the best estimator we can
use.
Following supplementary material is available on Nestor and (link)
 Hypothesis testing in linear regression models, R2 and more.

Regression is concerned with describing and evaluating the relationship
between a given variable and one or more other variables.
Examples:
1. How do asset returns vary with their level of market risk?
2. What factors impact the price or demand for a good?

Regression <<>> correlation
Correlation: measures the degree of linear association between two
variables  They are treated systematically.
Regression: The dependent variable, Y, is treated differently than the
independent variable(s), x. y is assumed to be random/stochastic,
whereas x is assumed to be fixed/non-stochastic.

An example a simple regression
Suppose we want to study the relationship between the excess returns on
a fund manager’s portfolio (‘fund XXX’) and the excess return on a market
index.




3

, Research Methods in Finance Lectures – University of Groningen – Joris Wellen




A simple linear regression can easily be extended to include k-1
explanatory variables




In general, we have three types of data:
1. Cross-sectional data
y i=α + β x i + ε i
2. Time-series data
y t =α + β x t + ε t
3. Panel data
y ¿ =α+ β x ¿ + ε ¿

The random error component U t can capture a number of features.
1. We always leave out some determinants of Y t (example: IQ)
2. There may be error in the measurement of Y t that cannot be
modelled
3. Random outside influences on Y t which we cannot model (a terrorist
attack, a natural disaster, a double rainbow.

How did we estimate the line from the picture below?
Y t =α + β x t +u
- The most common method used to fit a line, and estimate α and β is
Ordinary Least Squares (OLS).
- OLS tries to minimize the sum of squared residuals.

Ordinary Least
Squares (OLS):




4
€7,89
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien


Document également disponible en groupe

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
joriswellen Rijksuniversiteit Groningen
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
39
Membre depuis
7 année
Nombre de followers
31
Documents
21
Dernière vente
9 mois de cela

4,0

3 revues

5
1
4
1
3
1
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions