Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Notes de cours

ALL lectures for Customer and Marketing Analytics

Note
-
Vendu
19
Pages
44
Publié le
12-10-2022
Écrit en
2022/2023

ALL the lectures of the course Customer and Marketing Analytics in one document. Including a lot of sample exam questions! Ready for you to rock your exam! :)

Établissement
Cours











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Publié le
12 octobre 2022
Fichier mis à jour le
25 octobre 2022
Nombre de pages
44
Écrit en
2022/2023
Type
Notes de cours
Professeur(s)
Aylin aydinli
Contient
Toutes les classes

Sujets

Aperçu du contenu

LECTURES CUSTOMER AND MARKETING ANALYTICS 2022
Taught by: Aylin Aydinli


Overview of all the lectures for the course Consumer Marketing

Lecture 1: Introduction p2
Lecture 2: Basic Statistical Analysis p3
Lecture 3: Measurement and scaling: reliability, validity and dimensionality p10
Lecture 4: Creating perceptual maps (using Factor Analysis) p18
Lecture 5: Market Response Models p22
Lecture 6: Mediation and Moderation p29
Lecture 7&8: Predicting Customer Response using RFM Approach (Logistic p31
Regression Analysis)
Lecture 9&10: Understanding Individual Customer Preferences Using Conjoint p36
Analysis
Lecture 11: Course wrap-up (processed in the lectures)




1

,Lecture 1: Introduction




Why do firms do research in Marketing?
Marketers use “the right” principle “to do” marketing
 get the right products to the right people at the right place at the right time at the right
price using the right promotion techniques.

To be “right” in marketing: need for decision making information that reduces uncertainty to
aid in smarter managerial decision making.

Marketing research
Planning, collection, and analysis of data relevant to marketing decision making and the
communication of the results of this analysis to management.

It can be micro-level (individual) or macro-level (market) in nature.

Value of marketing research:
- Decreased uncertainty
- Increased likelihood of a correct decision
- Improved marketing performance and resulting higher profits

1) Identifying the problem and problem definition
Marketing decision problem Marketing research problem
Asks what the decision-maker needs to do Asks what information is needed and how it
can best be obtained
Action oriented Information oriented
Focuses on the symptoms Focuses on the underlying causes

2) From decision problem to research problem
Example:
Decision problem: What logo design should we use for
the Olympics in London?
Research problem: How much do people like the different
proposed logos?




2

, 3) Classifying marketing research
a) Type of data
Quantitative research Qualitative research
Focus on numbers Not concerned with numbers
Profiling detailed usage and behavior Mapping the customer’s overall range of
behavior and attitude
Highlighting variations between sub-groups Pinpointing motivations behind people’s
behavior
Precisely measuring consumer preferences Stimulating new and creative ideas

b) Research design
Exploratory research Descriptive research Causal research
Emphasis on gaining ideas Often guided by an initial Determining a cause-and-
and insights hypothesis effect relationship
Clarify concepts Describe characteristics of Reveal associations between
certain group changes in variables
Develop specific hypotheses Examine associations
between two or more
variables
Make specific predictions
Qualitative research Quantitative research Quantitative research

c) Data source
Primary data Secondary data
Data collected specifically to answer the Data previously collected for purposes other
question(s) posed by the research (e.g., than the research at hand (e.g., customer
demographics) transaction databases)



Syndicated research
Large-scale marketing research that is
undertaken by a research firm and sold to
clients/companies

Lecture 2: Basic Statistical Analysis

1) Screen dataset: investigate quality of data
a) Error, missing values, inconsistencies
b) Explore and analyze the data
2) Describe and summarize data: a complete run-down analysis of all the variables in
your dataset one-at-a-time (univariate statistics)
a) Inferential analysis: learning about “the world” (univariate statistics)
b) Differential analysis (bivariate)
c) Associative analysis: (bivariate)

Descriptive analysis: used to describe the data set; frequency distributions and summary
statistics.
Inferential analysis: used to generate conclusions about the population’s characteristics
based on the sample data; confidence intervals and hypothesis testing.
3

, Differences analysis: used to compare the mean of the responses of one group to that of
another group; testing differences between samples.
Associative analysis: determines the strength and direction of relationships between two or
more variables; cross-tabulations and correlations.

Screening the dataset
- Check for missing data
o Some people miss questions in surveys
o Sometimes it is part of the research design (I don’t know)
- Find “strange codes” and errors
o Consistency checks (out of range, logically inconsistent, extreme values)
- Reverse coding (e.g., reversing negatively worded items)

Dealing with missing data
Is the missing data ignorable?
If it is part of the research design, YES. Otherwise, NO and you can:
- Assign missing values (calculating replacement values)
Or
- Delete missing values
o Exclude cases listwise: the person is excluded from the whole analysis.
o Exclude cases pairwise: a person’s data is excluded only for analyses for which
she has missing data. However, then you cannot compare analyses.

Level of measurement




Non-metric/categorical:
- Nominal
o Assigns numbers to identify subjects or objects
o Nothing is implied by the numbers other than identification
o E.g., student number, gender, region, brand chosen.

- Ordinal
o Ranking of objects
o Numbers indicate relative positions, but amount of difference between
numbers is unkown
o E.g., preference of brands or other ranking.

4
€7,99
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
ElineRijnsburger Vrije Universiteit Amsterdam
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
526
Membre depuis
5 année
Nombre de followers
333
Documents
54
Dernière vente
1 mois de cela

4,4

50 revues

5
28
4
17
3
4
2
1
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions