Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Samenvatting Econometrie 1 (FEB22004)

Note
-
Vendu
-
Pages
12
Publié le
08-09-2022
Écrit en
2020/2021

Uitgebreide samenvatting van Econometrie 1 (econometrie EUR)

Établissement
Cours









Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Publié le
8 septembre 2022
Nombre de pages
12
Écrit en
2020/2021
Type
Resume

Sujets

Aperçu du contenu

Week 1
Fitting line to scatter of data
In a scatter diagram with 𝑛 paired observations (𝑥! , 𝑦! ), 𝑖 = 1, … , 𝑛, we want to find the line
that gives the best fit to these points. The line is given by 𝑦 = 𝑎 + 𝑏𝑥
Terminology
𝑦: variable to be explained, dependent variable, endogenous variable
𝑥: explanatory variable, independent variable, exogenous variable, regressor, covariate
Deviation
𝑒! is the error that we make in predicting 𝑦! , so 𝑒! = 𝑦! − 𝑎 − 𝑏𝑥!
Ordinary least squares (OLS)
Minimalize the sum of squares of the errors, so minimalize 𝑆(𝑎, 𝑏) = ∑𝑒!" . By computing
#$ #$ ∑()! *)̅ )(-! *-.)
#%
= 0 and #& = 0, 𝑎 = 𝑦4 − 𝑏𝑥̅ and 𝑏 = ∑()! *)̅ )"
can be found.
Least square residuals
Given the observations and the corresponding unique values of 𝑎 and 𝑏, we obtain the
residuals 𝑒! . These have two properties: ∑𝑒! = 0 and ∑(𝑥! − 𝑥̅ )𝑒! = 0, so the mean of the
residuals is 0, and 𝑥! and 𝑒! are uncorrelated
Sum of squares
From 𝑎 = 𝑦4 − 𝑏𝑥̅ we get that 𝑦! − 𝑦4 = 𝑏(𝑥! − 𝑥̅ ) + 𝑒! . Then, the sum of squares of (𝑦! − 𝑦4)
is ∑(𝑦! − 𝑦4)" = 𝑏 " ∑(𝑥! − 𝑥̅ )" + ∑𝑒!" . In words: the total sum of squares (SST) equals the
explained sum of squares (SSE) plus the sum of squared residuals (SSR), SST = SSE + SSR
Coefficient of determination: 𝑅"
The coefficient of determination, denoted by 𝑅" , is defined as
"
" $$/ $$1 & " ∑()! *)̅ )" 2∑()! *)̅ )(-! *-.)3
𝑅 = 1 − $$0 = $$0 = ∑(-! *-.)"
= ∑() *)̅ )" ∑(- *-.)" , so 𝑅" is equal to the correlation
! !
coefficient between 𝑥 and 𝑦. It holds that 0 ≤ 𝑅" ≤ 1, and the closer it is to 1, the better
Data generating process (DGP)
The data is generated with the equation 𝑦! = 𝛼 + 𝛽𝑥! + 𝜀! , 𝑖 = 1, … , 𝑛. The 𝑥 variables are
fixed, 𝛼 and 𝛽 are chosen, and 𝑛 𝜀 are generated with a variance 𝜎 " . Now, the data points
will be around the line 𝛼 + 𝛽𝑥
Random variation
If only the data set (𝑥! , 𝑦! ), 𝑖 = 1, … , 𝑛 is known, the underlying values of 𝛼, 𝛽, 𝜎 and 𝜀! are
not known. 𝑎 and 𝑏 can be seen estimators of 𝛼 and 𝛽. And because 𝜀! is random, 𝑦! is
random, so 𝑎 and 𝑏 are also random. With 1 observation, 𝑣𝑎𝑟(𝑏) can be computed under
assumptions
DGP assumptions
A1. 𝑥! are not random (fixed) with ∑(𝑥! − 𝑥̅ )" ≠ 0 (they are not on a vertical line)
A2. 𝜀! are random with 𝐸(𝜀! ) = 0
A3. 𝑣𝑎𝑟(𝜀! ) = 𝐸(𝜀!" ) = 𝜎 " , homoskedastic
A4. 𝐶𝑜𝑟B𝜀! , 𝜀4 C = 𝐸B𝜀! 𝜀4 C = 0 ∀𝑖 ≠ 𝑗, no serial correlation of errors
A5. 𝛼, 𝛽, 𝜎 are fixed unknown numbers with 𝜎 > 0
A6. 𝑦! = 𝛼 + 𝛽𝑥! + 𝜀! , linear model
A7. 𝜀5 , … , 𝜀6 are jointly normally distributed
Under these assumptions, 𝑦! ~ 𝑁(𝛼 + 𝛽𝑥! , 𝜎 " )
Notation
𝛼, 𝛽, 𝜎 and 𝜀! are unknown, 𝑦! and 𝑥! are known observed data, 𝑎, 𝑏 and 𝑒! are known and
derived from 𝑦! and 𝑥!

, Statistical properties
) *)̅ ) *)̅
𝑏 can be written as 𝑏 = 𝛽 + ∑𝑐! 𝜀! , where 𝑐! = ∑() !*)̅ )) = ∑()! *)̅ ). It follows that 𝐸(𝑏) = 𝛽,
! ! !
7"
so 𝑏 is an unbiased estimator of 𝛽, and that 𝑣𝑎𝑟(𝑏) = ∑() *)̅ )" .
!
5 )̅ ()! *)̅ )
𝑎 can be written as 𝑎 = 𝛼 + ∑𝑑! 𝜀! , where 𝑑! = 6 − ∑() *)̅ )" . It follows that 𝐸(𝑎) = 𝛼, so 𝑎
!
is an unbiased estimator of 𝛼
Best linear unbiased estimator (BLUE)
With estimators, there is a bias-variance tradeoff. A estimator with the smallest MSE is
preferred, 𝑀𝑆𝐸 = 𝐸((𝑏 − 𝛽)" ) = 𝑣𝑎𝑟(𝑏) + (𝑏𝑖𝑎𝑠)" . The Gaus-Markov theorem says that
the OLS estimators 𝑎 and 𝑏 is BLUE. Linear means that they are a linear combination of 𝑦! ,
and best means 𝑣𝑎𝑟(𝑏) ≤ 𝑣𝑎𝑟(𝑏 ∗ ) for every LUE 𝑏 ∗ . This theorem holds if A1-A6 hold.
In the class of LUE, we cannot do better than OLS, but we can if we allow bias, or non-linear
estimators
𝑡-test
It holds that 𝑏 ≠ 0 even if 𝛽 = 0, but it needs to be checked if 𝛽 = 0. For that, a 𝑡-test is
used with 𝐻9 : 𝛽 = 0 vs 𝐻5 : 𝛽 ≠ 0. 𝐻9 is rejected if OLS 𝑏 is “far enough from 0”.
7"
Under A1-A7, 𝑏 ~ 𝑁(𝛽, 𝜎&" ), where 𝜎&" = ∑() "
. If we standardize 𝑏 we get
# *)̅ )
&*:
𝑧= ~ 𝑁(0,1). So, we reject 𝐻9 if 𝑧 is “far enough from 0”. With a 5%
7/<∑()! *)̅ )"
significance level, this means if |𝑧| > 1.96 ⟺ |𝑏| > 1.96 ∙ 𝜎& .
&*: >
𝜎& is unknown, so it is replaced with 𝑠, then 𝑡 = $1(&) ~ 𝑡(𝑛 − 2), where 𝑆𝐸(𝑏) =
<∑()! *)̅ )"
(standard error of 𝑏). So, we reject 𝐻9 if |𝑡| > 𝑐 ⟺ |𝑏| > 𝑐 ∙ 𝑆𝐸(𝑏). With a 5% significance
level, 𝑐 = 2 can be used
Estimating 𝜎
5
Use the estimator 𝑠 " = 6*" ∑𝑒!" as an unbiased estimator. 𝑠 is the standard error of
regression. The intuition for 𝑛 − 2 is that (𝑒5 , … , 𝑒6 ) are not independent, because the OLS
gives 2 restrictions: ∑𝑒! = 0 and ∑𝑥! 𝑒! = 0. From the first 𝑛 − 2 term, the last two follow
Other methods
The P-value can also be used to test the 𝐻9 . This is the probability that under the 𝐻9 to
obtain the observed test value or value more in the direction of 𝐻5 .
&*:
An interval can also be used. Take 𝑐 such that 𝑃(−𝑐 ≤ 𝑡 ≤ 𝑐) = 0.95, so −𝑐 ≤ $1(&) ≤ 𝑐.
Then the interval is 𝑏 − 𝑐 ∙ 𝑆𝐸(𝑏) ≤ 𝛽 ≤ 𝑏 + 𝑐 ∙ 𝑆𝐸(𝑏)
Prediction
The prediction is for 𝑦6?5 . Assume that A1-A7 hold for (𝑥! , 𝑦! ), 𝑖 = 1, … , 𝑛 + 1, but 𝑦6?5 is
not yet observed. The actual outcome will be 𝑦6?5 = 𝛼 + 𝛽𝑥6?5 + 𝜀6?5 , but the point
prediction is 𝑦Z6?5 = 𝑎 + 𝑏𝑥6?5 .
The forecast error is 𝑓 = 𝑦6?5 − 𝑎 − 𝑏𝑥6?5 = (𝛼 − 𝑎) + (𝛽 − 𝑏)𝑥6?5 + 𝜀6?5 . It holds that
5 ()$%# *)̅ )"
𝐸(𝑓) = 0 and 𝑣𝑎𝑟(𝑓) = 𝜎 " \1 + 6 ∑()! *)̅ )"
]. This variance is higher than the variance 𝜎 " of
the errors. That is because 𝑎 and 𝑏 are used instead of 𝛼 and 𝛽
Prediction interval
@ @
If A1-A7 hold true for 𝑖 = 1, … , 𝑛 + 1, then A%B(@) ~ 𝑁(0,1). And > ~ 𝑡(𝑛 − 2) with
&
5 ()$%# *)̅ )"
𝑠@" "
= 𝑠 \1 + 6 ∑()! *)̅ )"
]. So, a 1 − 𝛼 prediction interval for 𝑦6?5 is given by
B𝑎 + 𝑏𝑥6?5 − 𝑐𝑠@ , 𝑎 + 𝑏𝑥6?5 + 𝑐𝑠@ C, with 𝑐 such that𝑃(|𝑡| > 𝑐) = 𝛼 when 𝑡 ~ 𝑡(𝑛 − 2).
For a 95% interval, 𝑐 = 2 can be used
€6,99
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien


Document également disponible en groupe

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
LeonVerweij Cals College Nieuwegein (Nieuwegein)
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
33
Membre depuis
7 année
Nombre de followers
19
Documents
28
Dernière vente
5 mois de cela

2,0

1 revues

5
0
4
0
3
0
2
1
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions