Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Summary Calculus (CSE1200) TU Delft

Note
-
Vendu
-
Pages
18
Publié le
07-09-2022
Écrit en
2018/2019

A summary of the course Calculus (CSE1200) of TU Delft, part of the bachelor Computer Science and Engineering.

Établissement
Cours










Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Publié le
7 septembre 2022
Fichier mis à jour le
8 septembre 2022
Nombre de pages
18
Écrit en
2018/2019
Type
Resume

Sujets

Aperçu du contenu

Overview calculus midterm:
• Lecture 1a: Inverse Functions and Logarithms (§1.5)
• Lecture 1b: Limits and continuity (§2.2, §2.3 and §2.5)
• Lecture 1c: Limits at infinity (§2.6)
• Lecture 2a: The Chain Rule and Implicit differentiation (§3.4 and §3.5)
• Lecture 2b: Linearization and differentials (§3.10)
• Lecture 2c: L’Hospital’s Rule (§4.4)
• Lecture 3a: The Substitution Rule (§5.5)
• Lecture 3b: Integration by parts (§7.1)
• Lecture 3c: Improper Integrals (§7.8)
• Lecture 4a: Sequences (§11.1)
• Lecture 4b: Series (§11.2)
• Lecture 4c: The Integral Test and Estimates of Sums (§11.3) + Alternating series (§11.5)
• Lecture 5a: Absolute Convergence and the Ration and Root Tests (§11.6, skip Root test)
• Lecture 5b: Power Series (§11.8)
• Lecture 6a: Functions as power series (§11.9)
• Lecture 6b: Taylor series (§11.10)
• Lecture 7a: Complex numbers part 1 (Appendix H)
• Lecture 7b: Complex numbers part 2, vectors and dot product (Appendix H, §12.2, §12.3)
• Lecture 7c: Functions of several variables (§14.1)
• Lecture 8a: Partial derivatives and linearization (§14.3, §14.4)
• Lecture 8b: The directional derivative (§14.6)
• Lecture 8c: Minimum and maximum values (§14.7)
• Lecture 9a: Double integrals over rectangles (§15.1)
• Lecture 9b: Double integrals over simple regions (§15.2)

,Lecture 1a: Inverse Functions and Logarithms (§1.5)
• Find the maximal domain and range of a function.
• Find the inverse of a one-to-one function.
• Simplify expressions involving (inverses of) trigonometric functions.

Definition of a function: a map from one set (𝐴) to another (𝐵) denoted by 𝑓: 𝐴 → 𝐵
A function is a relation from 𝐴 (domain) to 𝐵 (codomain) that satisfies 2 conditions.
1. Every element of 𝐴 has to map to an element of 𝐵.
2. No element of 𝐴 maps to more than one element of 𝐵.

A function 𝑓 is called a one-to-one function if it never takes on the same value twice; that is,
𝑥! ≠ 𝑥" → 𝑓(𝑥! ) ≠ 𝑓(𝑥" )
𝑓(𝑥! ) = 𝑓(𝑥" ) → 𝑥! = 𝑥"
A function is one-to-one if and only if no horizontal line intersects the graph more than once.

Let 𝑓 be a one-to-one function with domain 𝐴 and range 𝐵. Then its inverse function 𝑓 #! has
domain 𝐵 and range 𝐴 and is defined by 𝑓 #! (𝑦) = 𝑥 ↔ 𝑓(𝑥) = 𝑦 for any 𝑦 in 𝐵.
The graph of 𝑓 #! is obtained by reflecting the graph of 𝑓 about the line 𝑦 = 𝑥

Domain of 𝑓 #! = range of 𝑓
Range of 𝑓 #! = domain of 𝑓

How to find the inverse function of a one-to-one function 𝑓
1. Write 𝑦 = 𝑓(𝑥)
2. Solve this equation for 𝑥 in terms of 𝑦 (if possible)
3. To express 𝑓 #! as a function of 𝑥, interchange 𝑥 and 𝑦.

To find the inverse trigonometric functions we have to restrict the domains of the trigonometric
functions so that they become one-to-one.
Function Inverse Restricted domain
sin(𝑥) = 𝑦 𝑠𝑖𝑛 #! (𝑦)
= arcsin (𝑦) = 𝑥 𝜋 𝜋
− ≤𝑥≤
2 2
cos(𝑥) = 𝑦 𝑐𝑜𝑠 #! (𝑦) = arccos(𝑦) = 𝑥 0≤𝑥≤𝜋
tan(𝑥) = 𝑦 𝑡𝑎𝑛#! (𝑦) = arctan(𝑦) = 𝑥 𝜋 𝜋
− <𝑥<
2 2

Kind of questions:
!
1. What is 𝑎𝑟𝑐𝑜𝑠(− ")
$
2. Simplify cos (arcsin D%E)
3. Find a rational expression of cos (arctan(𝑥))

, Lecture 1b: Limits and Continuity (§2.2, §2.3, §2.5)
• Evaluate a limit of a function at a point.
• Apply rules of calculation for limits (in particular the Squeeze Theorem)

Suppose 𝑓(𝑥) is defined when 𝑥 is near the number 𝑎. Then we write 𝐥𝐢𝐦 𝒇(𝒙) = 𝑳 and say “the
𝒙→𝒂
limit of 𝑓(𝑥), as 𝑥 approaches 𝑎, equals 𝐿” if we can make the values of 𝑓(𝑥) arbitrarily close to 𝐿
by restricting 𝑥 to be sufficiently close to 𝑎, but not equals to 𝑎.

We write 𝐥𝐢𝐦! 𝒇(𝒙) = 𝑳 and say the limit of 𝑓(𝑥) as 𝑥 approaches 𝑎 from the left is equal to 𝐿 if we
𝒙→𝒂
can make the values of 𝑓(𝑥) arbitrarily close to 𝐿 by taking 𝑥 to be sufficiently close to 𝑎 with 𝑥 less
than 𝑎.

We write 𝐥𝐢𝐦" 𝒇(𝒙) = 𝑳 and say the limit of 𝑓(𝑥) as 𝑥 approaches 𝑎 from the right is equal to 𝐿 if
𝒙→𝒂
we can make the values of 𝑓(𝑥) arbitrarily close to 𝐿 by taking 𝑥 to be sufficiently close to 𝑎 with 𝑥
greater than 𝑎.

lim 𝑓(𝑥) = 𝐿 if and only if lim! 𝑓(𝑥) = 𝐿 and lim" 𝑓(𝑥) = 𝐿
)→* )→* )→*

Suppose that lim 𝑓(𝑥) and lim 𝑔(𝑥) exist. Then
)→* )→*
1. lim P𝑓(𝑥) + 𝑔(𝑥)R = lim 𝑓(𝑥) + lim 𝑔(𝑥)
)→* )→* )→*
2. lim P𝑓(𝑥) − 𝑔(𝑥)R = lim 𝑓(𝑥) − lim 𝑔(𝑥)
)→* )→* )→*
3. lim 𝑐𝑓(𝑥) = 𝑐 lim 𝑓(𝑥)
)→* )→*
4. lim 𝑓(𝑥)𝑔(𝑥) = lim 𝑓(𝑥) ∗ lim 𝑔(𝑥)
)→* )→* )→*
+()) /01 +())
5. lim .()) = #→%
/01 .())
if lim 𝑔(𝑥) ≠ 0
)→* #→%
)→*
If 𝑓 is a polynomial or a rational function and 𝑎 is in the domain of 𝑓, then lim 𝑓(𝑥) = 𝑓(𝑎)
)→*


The Squeeze Theorem: if 𝑓(𝑥) ≤ 𝑔(𝑥) ≤ ℎ(𝑥) when 𝑥 is near 𝑎 (except possibly at 𝑎) and
lim 𝑓(𝑥) = lim ℎ(𝑥) = 𝐿 then lim 𝑔(𝑥) = 𝐿
)→* )→* )→*


A function 𝑓 is continuous at a number 𝑎 if lim 𝑓(𝑥) = 𝑓(𝑎), this requires three things.
)→*
1. 𝑓(𝑎) is defined (that is, 𝑎 is in the domain of 𝑓)
2. lim 𝑓(𝑥) exists
)→*
3. lim 𝑓(𝑥) = 𝑓(𝑎)
)→*


Lecture 1c: Limits at Infinity (§2.6)
• Evaluate a limit of a function at ±∞.
• Find horizontal and vertical asymptotes of a function.

Let 𝑓 be a function defined on some interval (𝑎, ∞). Then lim 𝑓(𝑥) = 𝐿 means that the values of
)→2
𝑓(𝑥) can be made arbitrarily close to 𝐿 by requiring 𝑥 to be sufficiently large.
Let 𝑓 be a function defined on some interval (−∞, 𝑎). Then lim 𝑓(𝑥) = 𝐿 means that the values of
)→#2
𝑓(𝑥) can be made arbitrarily close to 𝐿 by requiring 𝑥 to be sufficiently large negative.

The line 𝑦 = 𝐿 is called a horizontal asymptote of the curve 𝑦 = 𝑓(𝑥) if either lim 𝑓(𝑥) = 𝐿
)→2
or lim 𝑓(𝑥) = 𝐿
)→#2


The Squeeze Theorem also applies on limits to infinity.
€5,49
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
sachakorte Erasmus Universiteit Rotterdam
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
21
Membre depuis
4 année
Nombre de followers
18
Documents
16
Dernière vente
1 mois de cela

4,0

4 revues

5
2
4
0
3
2
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions