Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Samenvatting Wiskundige Methoden (FEB21010)

Note
-
Vendu
-
Pages
5
Publié le
06-09-2022
Écrit en
2019/2020

Uitgebreide samenvatting van Wiskundige Methoden (econometrie EUR)

Établissement
Cours









Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Publié le
6 septembre 2022
Nombre de pages
5
Écrit en
2019/2020
Type
Resume

Sujets

Aperçu du contenu

Combinatorics
𝑘 from 𝑛 Without repetition With repetition
𝑘-permutation from n
𝑛! 𝑘-permutation with repetition from 𝑛
With order
𝑃(𝑛, 𝑘) = 𝑛!
(𝑛 − 𝑘)!
𝑘-combination from 𝑛 𝑘-combination with repetition from 𝑛
Without order 𝑛 𝑛! 𝑛+𝑘−1 (𝑛 + 𝑘 − 1)!
* + = |𝒫(𝑁" , 𝑘)| = / 2=
𝑘 𝑘! (𝑛 − 𝑘)! 𝑘 (𝑛 − 1)! 𝑘!

One-to-one rule
Let 𝐴 and 𝐵 be finite sets. The number of elements in 𝐴 and 𝐵 is equal (|𝐴| = |𝐵|) ⟺ there is a
one-to-one correspondence (bijection) between 𝐴 and 𝐵
Rule of sum
If 𝐴 and 𝐵 are finite, disjoint sets, then |𝐴 ∪ 𝐵| = |𝐴| + |𝐵|
In general, if 𝐴 ∩ 𝐵 ≠ ∅, then |𝐴 ∪ 𝐵| = |𝐴| + |𝐵| − |𝐴 ∩ 𝐵|
Rule of product
If 𝐴 and 𝐵 are finite sets, then |𝐴 × 𝐵| = |𝐴| ∙ |𝐵|
Rule of difference
Let 𝐴 and 𝐵 be sets, then we define their difference as 𝐴\𝐵 = {𝑥 ∈ 𝐴: 𝑥 ∉ 𝐵)
If 𝐴 and 𝐵 are finite sets and 𝐵 ⊆ 𝐴, then |𝐴\𝐵| = |𝐴| − |𝐵|
Power set
Let 𝑋 be a finite set, we define 𝒫(𝑋) = {𝐴: 𝐴 ⊆ 𝑋} as the set cointaining all subsets of 𝑋
For 𝑘 ≥ 0, we define 𝒫(𝑋, 𝑘) = {𝐴: 𝐴 ⊆ 𝑋; |𝐴| = 𝑘}
Combinations without repetitions
Equals the problem to select 𝑘 elements from a set with 𝑛 elements without repetion and order,
select a subset of size 𝑘 from a set with 𝑛 elements, select an element in the set 𝒫(𝑁" , 𝑘)
Combinatorial Theorems
I. Complementarity: for 𝑛, 𝑘 ∈ ℕ with 𝑘 ≤ 𝑛, it holds that J"!K = J"#!"
K
II. Pascal’s identity: for 𝑛, 𝑘 ∈ ℕ with 1 ≤ 𝑘 ≤ 𝑛, it holds that J ! K = J"!K + J!#%
"$% "
K
Newton’s binomial theorem
Let 𝑛 ∈ ℕ and 𝑥, 𝑦 ∈ ℝ, then (𝑥 + 𝑦)" = ∑"&'%J"!K 𝑥 ! 𝑦 "#!
Combinatorial proof
0. Make a drawing to understand the equality
1. Write the left-hand side as the number of elements in a set
2. Write the right-hand side as the number of elements in a set
3. Show that the number of elements in both sets is equal by defining a one-to-one
correspondence, so for example by making a function that goes from the left-hand side to
the right-hand side and its inverse
Multinomial numbers
The number of k-permutations with repetition from 𝑛, of type 𝑡% , 𝑡( , … , 𝑡" equals
!!
*) ,) !,…,) + = ) !∙) !∙…∙) ! , with 𝑡% + 𝑡( + ⋯ + 𝑡" = 𝑘
! " # ! " #
k-combinations with repetition from n
Denote 𝑧& as the number of stars in the 𝑖th group. Then this can be viewed as a solution of the
equation 𝑧% + 𝑧( + ⋯ + 𝑧" = 𝑘 with 𝑧 ∈ {0,1,2 … }. The number of solutions is then J"$!#%!
K

, Graph Theory
Definition of a graph
A graph consists of two sets: a non-empty finite set 𝑉 of vertices and a set 𝐸 of edges, each edge
is a set of two vertices from 𝑉. The graph is denoted by 𝐺 = (𝑉, 𝐸)
Graph isomorphisms
Consider two graphs 𝐺 = (𝑉, 𝐸) and 𝐻 = (𝑊, 𝐹). A graph isomorphism 𝑓 from 𝐺 to 𝐻, is a
function 𝑓, such that 𝑓: 𝑉 → 𝑊 is a one-to-one relation and {𝑣% , 𝑣( } ∈ 𝐸 ⟺ {𝑓(𝑣% ), 𝑓(𝑣( )} ∈ 𝐹
Terminology
Consider a graph 𝐺 = (𝑉, 𝐸)
- Let 𝑒 = {𝑢, 𝑣} ∈ 𝐸 be an edge, we say that the edge 𝑒 connects 𝑢 and 𝑣, that 𝑒 is incident to
𝑢 and 𝑣 and that 𝑢 and 𝑣 are neighbors
- The degree of 𝑣 ∈ 𝑉 is the number of edges incident to 𝑣, 𝑑(𝑣) is the degree of 𝑣
- If a vertex 𝑣 ∈ 𝑉 has degree 1, then 𝑣 is and endpoint
- Let 𝐻 = (𝑊, 𝐹) be another graph, then 𝐻 is a subgraph of 𝐺 (𝐻 ⊆ 𝐺) if 𝑊 ⊆ 𝑉 and 𝐹 ⊆ 𝐸
First theorem on graph theory
Consider a graph 𝐺 = (𝑉, 𝐸), then ∑.∈0 𝑑(𝑣) = 2|𝐸|
Walking in a graph
A walk in a graph 𝐺 = (𝑉, 𝐸) is an alternating sequence 𝑣1 , 𝑒% , 𝑣% , 𝑒( , 𝑣( , … , 𝑒! , 𝑣! of vertices and
edges, such that edge 𝑒& is incident to 𝑣&#% and 𝑣& , for all 1 ≤ 𝑖 ≤ 𝑘. The number of edges in the
walk is the length of the walk. 𝑣1 is the start point of the walk, 𝑣! the end point. If 𝑣1 = 𝑣! , then
the walk is closed, otherwise it is open. The walk can also be denoted as 𝑣1 → 𝑣% → ⋯ → 𝑣!
Special walks
Open Closed and non-trivial
Contains each edge at most once Trail (route) Circuit
Contains each vertex and each edge at most one Path (pad) Cycle
Walk and path
Let 𝐺 = (𝑉, 𝐸) be a graph and 𝑢, 𝑣 be vertices in 𝑉. Every 𝑢, 𝑣-walk contain a 𝑢, 𝑣-path
Walk and cycle
Let 𝐺 = (𝑉, 𝐸) be a graph. A closed walk in 𝐺 of odd length contains a cycle of odd length
Distance in a graph
The distance 𝑑(𝑢, 𝑣) between two vertices 𝑢, 𝑣 ∈ 𝑉 in a graph 𝐺 = (𝑉, 𝐸) is the length of the
shortest 𝑢, 𝑣-path. If there is no path from 𝑢 to 𝑣, then 𝑑(𝑢, 𝑣) if infinite
The distance in a graph satisfies the triangle inequality: 𝑑(𝑢, 𝑣) ≤ 𝑑(𝑢, 𝑤) + 𝑑(𝑤, 𝑣)
Special graphs
The complete graph 𝐾" is the graph with all possible edges, the path 𝑃" is a graph that satisfies
the properties op a path, the cycle 𝐶" is a graph that satisfies the properties op a cycle
Connected graph
A graph 𝐺 is connected if for each pair of vertices 𝑢, 𝑣, there is a 𝑢, 𝑣-path in 𝐺
If a graph is not connected, it contains several connected components
Theorem connected graphs
Let 𝐺 = (𝑉, 𝐸) be a graph. Define the complement of 𝐺 as the graph 𝐺̅ (𝑉, 𝐸f ) that has the same
set of vertices, but contains all edges 𝑒 that are not in 𝐺. Then, 𝐺 is connected and/or 𝐺̅ is
connected
Spanning subgraph
Let 𝐺 = (𝑉, 𝐸) be a graph and let 𝐻 = (𝑊, 𝐹) be a subgraph of 𝐺. 𝐻 is spanning if 𝑊 = 𝑉
Bipartite graphs
A graph is bipartite if its vertices can be split into two parts. Splitting means that edges are from
the first part to the second part, and not within a part itself.
A bipartite graph is denoted as 𝐺 = (𝑉% ∪ 𝑉( , 𝐸)
€6,99
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien


Document également disponible en groupe

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
LeonVerweij Cals College Nieuwegein (Nieuwegein)
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
33
Membre depuis
7 année
Nombre de followers
19
Documents
28
Dernière vente
5 mois de cela

2,0

1 revues

5
0
4
0
3
0
2
1
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions