Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Samenvatting Inleiding Analyse (FEB21017)

Note
-
Vendu
2
Pages
8
Publié le
04-09-2022
Écrit en
2019/2020

Samenvatting van Inleiding Analyse (econometrie EUR)

Établissement
Cours









Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Publié le
4 septembre 2022
Nombre de pages
8
Écrit en
2019/2020
Type
Resume

Sujets

Aperçu du contenu

Samenvatting Inleiding Analyse
Hoorcollege 1 + 2
Termen
∞ oneindig (kan −∞ of +∞ zijn)
∀ alle, willekeurig
∃ er bestaat
f lege verzameling { }
Î element van
Ï geen element van
⊆ deelverzameling (kan gelijk zijn)
⊂ echte verzameling (kan niet gelijk zijn)
È vereniging van verzamelingen
Ç doorsnede van verzamelingen
Ac complement van de verzameling A, alles wat buiten A valt
|A| kardinaliteit (= hoeveelheid elementen) in de verzameling A
1A karakteristieke functie voor de verzameling A
S som
⇔ ’dan en slechts dan als’
Þ als… dan…
¬ niet
Ù en
Ú of

U = Universum waarbinnen je moet blijven
P(A) = Powerset van A, deelverzamelingen van A
A = {1,2}
P(A) = {{1,2}, {1}, {2}, f}
A = {1,2} = Lijstnotatie
A = {r Î N | 1 £ r £ 2} = Set builder notatie
Eindige kardinaliteit: A = {1,2,3,4}
Telbaar oneindige kardinaliteit: A = {1,2,3,4,…}, dan |A| = |N| = À0 = alef-nul
Ontelbaar oneindige kardinaliteit A = (1,1), dan |A| = |R| = c = continuüm
Kardinaliteit P(A) is |P(A)| = 2|A|

Definities, wetten en bewijzen te gebruiken
A = D Û (A Í D en D Í A)
A = D Û (" x Î A Û x Î D)

A Í D Û (" x Î A Þ x Î D) def. Í
x Î A Û {x} Í A def. Í
{x} Í A Û {x} Î P(A) def. P
A \ B = {x Î U | x Î A EN x Ï B} def. \
A È B = {x Î U | x Î X OF x Î Y} def. È
A Ç B = {x Î U | x Î X EN x Î Y} def. Ç
Ac = {x Î U | x Ï A} def. c
A È (B Ç C) = (A È B) Ç (A È C) distributieve wet (distr.)
A Ç (B È C) = (A Ç B) È (A Ç C) distributieve wet (distr.)
(A È B)c = Ac Ç Bc De Morgan’s law (D.M.)
(A Ç B)c = Ac È Bc De Morgan’s law (D.M.)

A, f Í A
Ac = U \ A

, A \ B = A Ç Bc
Uc = f en fc = U
Ac Ç A = f en Ac È A = U
Als P Í Q, dan P È Q = Q en P Ç Q = P
AÇf=f
AÈf=A
Als A Í B en B Í C dan A Í C

Als |A| = |D| dan A ~ D
Twee verzamelingen aan elkaar koppelen
1. E Ì N met E = {1,3,5,7,…} en N = {0,1,2,3,…}
2. f : N à E
3. f(n) = 2n + 1 (1-op-1 relatie)
4. N ~ E, dus dan zelfde kardinaliteit
Bewijs uit het ongerijmde: neem aan dat de stelling niet waar is en laat zien dat die aanname
tot een tegenspraak leidt
Bewijs dat een verzameling oneindig is: laat zien dat het equivalent is aan een van zijn echte
deelverzamelingen

(¬¬p) Û p dubbele ontkenning
(p ∧ q) Û (q ∧ p) communicativiteit (comm.)
(p ∨ q) Û (q ∨ p) communicativiteit (comm.)
[(p ∧ q) ∧ r] Û [p ∧ (q ∧ r)] associativiteit (ass.)
[(p ∨ q) ∨ r] Û [p ∨ (q ∨ r)] associativiteit (ass.)
[(p ∧ q) ∨ r] Û [(p ∨ r) ∧ (q ∨ r)] distributieve wet logica (d.w.l.)
[(p ∨ q) ∧ r] Û [(p ∧ r) ∨ (q ∧ r)] distributieve wet logica (d.w.l.)
¬(p ∧ q) Û (¬p ∨ ¬q) De Morgan’s wet logica (D.M.l)
¬(p ∨ q) Û (¬p ∧ ¬q) De Morgan’s wet logica (D.M.l)
(p Û q) Û [(p Þq) ∧ (¬p Þ¬q)] voldoende en noodzakelijke conditie
[(p Þ q) ∧ (q Þr)] ⇒ (p Þ r) transitiviteit

p q ¬p ¬q pÙq pÚq pÞq ¬q Þ ¬p ¬( p Ù q) ¬p Ú ¬q
T T F F T T T T F F
T F F T F T F F T T
F T T F F T T T T T
F F T T F F T T T T


Hoorcollege 3 + 4
Wiskundige inductie voor " n Î N, laat P(n) een stelling zijn afhankelijk van n. Ga
ervan uit dat de 2 volgende voorwaardes zijn vervuld
1. P(1) is waar
2. Voor " k Î N, als P(k) waar is dan P(k + 1) is waar. Dan
P(n) is waar voor " n Î N
Stappen wiskundige inductie
1. Basisstap (B.S.)
Laat zien dat de stelling waar is voor het eerste mogelijke getal
2. Inductie hypothese (I.H.)
Selecteer een willekeurige k Î N, k ³ 0 (0 mag ook een ander getal zijn, het laagst
mogelijk getal waarvoor je het gaat bewijzen met k) en neem aan dat de stelling waar
is voor n = k. Deze stelling met n = k is de inductie hypothese.
€6,99
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien


Document également disponible en groupe

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
LeonVerweij Cals College Nieuwegein (Nieuwegein)
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
33
Membre depuis
7 année
Nombre de followers
19
Documents
28
Dernière vente
5 mois de cela

2,0

1 revues

5
0
4
0
3
0
2
1
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions