Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Samenvatting H10 | Elektromagnetisme - Systematische natuurkunde (5 VWO)

Note
-
Vendu
7
Pages
6
Publié le
15-08-2022
Écrit en
2021/2022

Een complete samenvatting van H10 | Elektromagnetisme (Systematische natuurkunde, 5 VWO), wie wil dat nou niet! Deze samenvatting bevat alles wat je moet weten van dit hoofdstuk. Daarnaast is het erg overzichtelijk en zijn er genoeg voorbeelden en alle blauwe woorden worden duidelijk uitgelegd. Aan het eind worden alle formules die bij het hoofdstuk horen nog een in een schema gezet voor een compact overzicht. ISBN: 978 90 06 09063 5 Negende druk, tweede oplage 2020

Montrer plus Lire moins
Type
Cours









Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Livre connecté

École, étude et sujet

Établissement
Lycée
Type
Cours
Année scolaire
4

Infos sur le Document

Livre entier ?
Non
Quels chapitres sont résumés ?
Hoofdstuk 10
Publié le
15 août 2022
Nombre de pages
6
Écrit en
2021/2022
Type
Resume

Sujets

Aperçu du contenu

Systematische Natuurkunde 5 VWO ||| Samenvatting Hoofdstuk 10: Elektromagnetisme


0




H10 | Elektromagnetisme
10.1 Elektrische velden
Ladingen, krachtwerking op afstand
Er zijn twee soorten ladingen: positieve en negatieve. De grootheid van lading geef je weer met het
symbool 𝑞 of 𝑄. De eenheid is coulomb (𝐶). Lading is altijd gekoppeld aan deeltjes. De kleinste
hoeveelheid lading noem je de elementaire lading 𝑒 (1,602 · 10-19 C).
Ladingen oefenen kracht op elkaar uit zonder dat de geladen deeltjes elkaar raken.

Wet van Coulomb
Als deeltjes met gelijke ladingen dichter bij elkaar zijn, stoten ze elkaar meer af. Dit gebeurt ook
als de lading groter is. De grootte van de elektrische kracht die twee ladingen op elkaar
uitoefenen, bereken je met de wet van coulomb.
𝑞·𝑄
𝐹𝑒𝑙 = 𝑓 · 2
𝑟
■ 𝐹𝑒𝑙 is de elektrische kracht in N.
■ 𝑓 is een constante in Nm-2C-2.
■ 𝑞 is de grootte van de lading van deeltje 1 in C.
■ 𝑄 is de grootte van de lading van deeltje 2 in C.
■ 𝑟 is de afstand tussen de twee deeltjes in m.

Het elektrisch veld
De ruimte om een lading heeft elektrische eigenschappen. In die ruimte is een elektrisch veld
aanwezig. De eigenschap van een elektrisch veld waardoor geladen deeltjes krachtwerking
ondervinden heet de elektrische veldsterkte 𝐸. De grootte van de elektrische kracht hangt af van
de lading van het deeltje zelf en van de elektrische veldsterkte. Deze bereken je met:
→ →
𝐹𝑒𝑙
= 𝑞 · 𝐸

■ 𝐹𝑒𝑙
is de elektrische kracht in N.
■ 𝑞 is de lading van het deeltje in C.

■ 𝐸
is de elektrische veldsterkte in NC-1.

Veldlijnen in een elektrisch veld
Elektrische veldlijnen zijn denkbeeldige lijnen waarmee je de
richting van de kracht op een positief geladen deeltje in een
elektrisch veld kunt bepalen. Een elektrisch veld kun je niet zien. De
eigenschappen kan je wel bepalen met een deeltje die een kleine
lading heeft: de proeflading.
Veldlijnen hebben de volgende kenmerken:
■ Altijd van de positieve lading af gericht, naar de negatieve
lading toe.
■ De richting van het elektrisch veld is gelijk aan de richting van de elektrische kracht op de
positieve proeflading.
■ Hoe dichter veldlijnen bij elkaar liggen, des te groter is de elektrische veldsterkte.
■ Elektrische veldlijnen snijden elkaar nooit.
■ Veldlijnen staan loodrecht op geleiders.
Aan de binnenkant van een geleider is het elektrisch veld nul.

Radiaal veld en homogeen veld
Twee evenwijdige metalen platen die op een spanningsbron zijn aangesloten, noem je een
condensator. Tussen de platen van een condensator bevindt zich een homogeen elektrisch veld.
De veldsterkte is overal even groot en is overal gelijk gericht.

, Systematische Natuurkunde 5 VWO ||| Samenvatting Hoofdstuk 10: Elektromagnetisme



10.2 Elektrische energie
Potentiële energie en kinetische energie
Op een elektron werkt een elektrische kracht. Deze kracht versnelt het elektron. Dan kan je zeggen
dat zijn snelheid en dus zijn kinetische energie is toegenomen. Volgens de wet van behoud van
energie is dan een vorm van potentiële energie afgenomen. De vorm van potentiële energie die
het elektron heeft door zijn plaats in het elektrisch veld noem je elektrische energie.
De toename van kinetische energie is gelijk aan de afname van de elektrische energie.
Er geldt:
∆𝐸𝑘 = − ∆𝐸𝑒𝑙
■ ∆𝐸𝑘 is de verandering van de kinetische energie in J.
■ ∆𝐸𝑒𝑙 is de verandering van de elektrische energie in J.

De sterkte van het elektrisch veld hangt af van de spanning over condensatorplaten. Hoe groter de
spanning → Sterker elektrisch veld. Verandering van de elektrische energie hangt af van de
spanning tussen begin- en eindpunt van het elektron.
Er geldt:
∆𝐸𝑒𝑙 = 𝑞 · 𝑈
■ ∆𝐸𝑒𝑙 is de verandering van de elektrische energie in J.
■ 𝑞 is de lading in C.
■ 𝑈 is de spanning in V.

Röntgenbuis
Een röntgenapparaat maakt gebruik van röntgenstraling om een afbeelding te
maken. De röntgenstraling die daarvoor nodig is, wordt opgewekt in een
röntgenbuis.
In een röntgenbuis worden elektronen versneld met behulp van een sterk
elektrisch veld. Elektronen botsen op elkaar door de versnelspanning UAK en
ontstaat röntgenstraling.

Lineaire versneller
Bij CERN krijgen protonen en ionen in een lineaire versneller bijna de
lichtsnelheid. Om deze snelheid te krijgen worden protonen in meerdere stappen versneld met een
wisselend elektrisch veld. Zo ondergaat het proton in de versneller meerdere keren de
versnelspanning UPQ. Hierbij geldt telkens: ∆𝐸𝑘 = 𝑞 · 𝑈𝑃𝑄




Elektronvolt
De energie van deeltjes druk je uit in joule. Een andere eenheid is elektronvolt.
Er geldt: 1,000 eV = 1,602 · 10-19 J (BINAS tabel 5 voor omrekenfactor eV en J).


10.3 Elektromagnetisme
Het magnetisch veld
Bij magneten is er een krachtwerking op afstand. Door de aanwezigheid van de magneet krijgt de
ruimte magnetische eigenschappen. In die ruimte is een magnetisch veld aanwezig. Ook een
magnetisch veld kun je schematisch weergeven met veldlijnen.
Veldlijnen van een magnetisch veld hebben de volgende kenmerken:
■ Veldlijnen zijn gesloten krommen.
■ Veldlijnen snijden elkaar nooit.
■ Sterker magnetisch veld → Hoe dichter de veldlijnen bij elkaar liggen.
■ Veldlijnen komen niet altijd loodrecht uit een magneet.
€2,99
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien


Document également disponible en groupe

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
Justin1303 Universiteit van Amsterdam
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
342
Membre depuis
6 année
Nombre de followers
211
Documents
2
Dernière vente
3 semaines de cela

Een N&T profiel en zit je in de vierde, vijfde of zesde? Dan ben je hier aan het goeie adres voor samenvattingen van Natuurkunde (Systematische Natuurkunde), Scheikunde (Chemie Overal) en Aardrijkskunde (De Geo).

3,9

46 revues

5
16
4
17
3
8
2
1
1
4

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions