Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Samenvatting Wiskunde Voor Ontwerpers

Note
-
Vendu
2
Pages
37
Publié le
15-08-2022
Écrit en
2021/2022

Alle hoorcolleges gegeven door prof. Lieven Le Bruyn. Quiz's worden op een aparte document.












Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Infos sur le Document

Publié le
15 août 2022
Nombre de pages
37
Écrit en
2021/2022
Type
Resume

Sujets

Aperçu du contenu

Wiskunde voor Ontwerpers

Hoofdstuk 1: Plannen en veelvlakken

Plan: De plaatsing van een aantal muren die het bouwoppervlak opdelen in een aantal ruimten zodat
een aantal activiteiten kunnen plaatsvinden.

Vlakke graf: Hoekpunten die verbonden zijn met zijden, die elkaar niet snijden en het vlak opdelen in
gebieden, waaronder ook de buitenruimte. Gebieden (kamers) zijn aangrenzend als ze een zijde
gemeen hebben.

Een plan kunnen we schetsmatig voorstellen door een vlakke graf, dat is een aantal hoekpunten
(waar muren samenkomen), een aantal zijden die deze hoekpunten verbinden (muur-fragmenten) en
die het vlak opdelen in een aantal gebieden (de kamers en de buitenruimte).



In dit voorbeeld is het aantal hoekpunten V (van ‘vertices’) gelijk aan 12,
het aantal zijden E (van ‘edges’) gelijk aan 16 en het aantal gebieden F
(van ‘faces’) gelijk aan 6 (5 kamers plus de buitenruimte)



V–E+F=2




Duale graf: die een hoekpunt heeft voor elke kamer en een zijde heeft tussen twee hoekpunten juist
dan als de kamers een muur fragment gemeen hebben.



Voor deze blauwe vlakke graf hebben we V = 5; E =7 en F= 4 en
wederom is V – E + F = 2




Trivalente vlakke graf: In elk hoekpunt komen juist drie zijden toe, en aangrenzende gebieden blijven
aangrenzend.

3-samenhangende trivalente vlakke graf: alle hoekpunten blijven verbonden als je één of twee zijden
verwijderd

, Schröder-huis plan -> 3-samenhangende trivalente vlakke graf




Veelvlak: ruimtelijke figuur verkregen door veelhoeken langs gemeenschappelijke zijden aan elkaar
te plakken. Elk hoekpunt is volledig omringd door zijvlakken en elke ribbe is de grens van juist twee
zijvlakken.

Convex veelvlak: veelvlak zodat in elk hoekpunt de som van de binnenhoeken van de aangrenzende
zijvlakken minder is dan 360°.

Trivalent convex veelvlak: convex veelvlak zodat ik elk hoekpunt juist drie zijvlakken samenkomen.



Stelling van Ernst Steinitz: Elke 3-samenhangende trivalente vlakke graf is de projectie van de ribben
van een trivalent convex veelvlak.

- Het zijvlak geeft de rand van de vlakke graf.
- Het aantal gebieden van de vlakke graf is gelijk aan het aantal
zijvlakken van het veelvlak.
- Het aantal hoekpunten van een gebied van de graf komt
overeen met het aantal hoekpunten van het zijvlak.
- We kennen alle configuraties van n kamers indien we alle
trivalente convexe veelvlakken kennen met n + 1 zijvlakken.


Elk trivalent convex veelvlak met ten hoogste 11 zijvlakken krijgen we uit de tetraheder door
opeenvolging van:

 Afknippen van een hoekpunt. (om zo een extra driehoekig zijvlak te maken)
 Opentrekken van een ribbe, indien mogelijk (als die grenst aan minstens 4-hoeken, om zo
een extra vierhoekig zijvlak te maken)

,Er bestaat dus essentieel maar één trivalent convex veelvlak met 5 zijvlakken dat we krijgen door een
top van de tetraheder te knippen, bijvoorbeeld het driehoekig prisma.




Dat twee driehoekige zijvlakken heeft en drie vierhoekige zijvlakken. -> We kunnen het driehoekig
prisma projecteren vanuit een driehoekig zijvlak of vanuit een vierhoekig zijvlak.



Uit het driehoekig prisma krijgen we de twee essentieel unieke trivalente convexe veelvlakken met 6
zijvlaken: we kunnen een opstaande zijde openrekken en dan krijgen we een balk die 6 vierhoekige
zijvlakken heeft, of we kunnen een top afknippen en dan krijgen we het veelvlak dat 2 vijfhoekige
zijvlakken heeft, 2 vierhoekige en 2 driehoekige.




Uit de twee trivalente convexe veelvlakken met 6 zijvlakken krijgen we alle vereenvoudigde
configuraties met 5 kamers. De balk kunnen we enkel projecteren vanuit een vierhoekig zijvlak, maar
de andere figuur kunnen we projecteren vanuit een driehoekig, een vierhoekig of vijfhoekig zijvlak.

De met †
aangeduide
configuratie is deze
van het
vereenvoudigde
Schröder-huis
grondplan.

, Hoofdstuk 2: symmetrie en orbifolds

Symmetrie: dit patroon is een operatie op het vlak dat dit patroon bewaart.

We onderscheiden verschillende zulke operaties.


- Translaties: verschuiven het gehele vlak in een bepaalde richting over een bepaalde afstand.




- Spiegelingen: spiegelingen het vlak ten opzichte van een rechte, de spiegel-as.




- Rotaties: draaien het vlak ten opzichte van een punt, het rotatie-centrum, over een bepaalde
hoek, de rotatie hoek.




- Glij-spiegeling: de samenstelling van een spiegeling met een translatie evenwijdig met de
spiegel-as.




Orbifold: kleinste deel van het patroon waaruit we het volledige patroon krijgen door symmetrie
operaties.

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
beatrizsarriafernandes Universiteit Antwerpen
Voir profil
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
51
Membre depuis
6 année
Nombre de followers
29
Documents
29
Dernière vente
4 mois de cela

4,3

3 revues

5
1
4
2
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions