Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Sumario Teorema de Gauss apunte teórico práctico

Note
-
Vendu
-
Pages
5
Publié le
10-08-2022
Écrit en
2021/2022

Este es un apunte teórico practico sobre el teorema de Gauss para hallar las raíces de polinomios de grado mayor o igual a 3. La aplicación del teorema es para polinomios con coeficientes enteros y para hallar sus raíces racionales. Figuran en el articulo, un ejemplo guiado y ejercitación adicional con sus respectivos resueltos. Esta herramienta matemática es fundamental para la factorización de funciones polinómicas con grado mayor o igual a 3.

Montrer plus Lire moins
Établissement
Cours









Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Lycée
Cours
ESO
Cours
Année scolaire
4

Infos sur le Document

Publié le
10 août 2022
Nombre de pages
5
Écrit en
2021/2022
Type
Resume

Sujets

Aperçu du contenu

Profesora Mariana Bustamante

En el siguiente apunte vamos a hablar de las
funciones polinomicas y cortes con el eje x.

Para poder calcular las raices de un polinomio
de grado mayor o igual a 3, generalmente vamos
a necesitar nuevas herramientas matemáticas.
Una de ellas es el Teorema de Gauss, que nos
da una pista para poder hallar las raices o cortes
con el eje x de nuestra función.
Veamos de qué se trata. Antes de empezar,
te pido que completes los siguientes espacios:

Leer y completar los espacios
Raices de un
Consideremos el siguiente polinomio
𝑃(𝑥) = 27𝑥 3 + 3𝑥 − 10, que tiene todos sus
coeficientes enteros.
polinomio con
2
Calculemos 𝑃 (3) =__________________
2
coeficientes
Como 𝑃 (3) =______, resulta que x=2/3 es el corte
con el eje x de P(x). enteros
Prestemos atención que este número (2/3) cumple con
las siguientes condiciones:

• El numerador 2 divide al coeficiente
independiente -10
Podemos notar que existe una
• El denominador 3 divide al coeficiente
relacion entre la raiz de un
principal 27 polinomio y los terminos
independiente y principal

, Ejemplo
Hallar cortes con eje x del
polinomio
𝑷(𝒙) = 𝟐𝒙𝟑 + 𝟑𝒙𝟐 − 𝟏

• Verificamos que todos los coeficientes de
P(x) son enteros ya que los números: ……,
………. Y ……… pertenecen a Z

• Hallamos los divisores p del termino
independiente, ellos son:…………..

• Hallamos los divisores q del coeficiente
principal, ellos son……………..

• Formamos todas las fracciones irreducibles
de la forma p/q=………………; ………….;
Entonces para hallar las raices ……………….. de …………..y………….. .
un polinomio con • Evaluamos el Polinimoio en cada una de las
coeficientes…………………….., debemos seguir cuatro fracciones del paso anterior:
los siguienes pasos: 𝑃(1) = 𝑃(… . ) =
Teorema de Gauss 𝑃(… . . ) = 𝑃(… . . ) =
• Hallar los divisores p del término
El teorema de Gauss que generaliza esta situacion independiente, y los divisores q del
afirma que : En conclusión, las raices racionales de
coeficiente………………….
nuestro polinomio P(x) son………
• Formar con ellos…………………..
Cuando una fracción irreducible p/q es raiz de un
irreducibles p/q , que serán las
polinomio con coeficientes enteros, el denominador p
posibles raices del polinomio
divide al término independiente y el numerador q
• Especializar o evaluar el polinomio en
divide al coeficiente principal. estas fracciones para ver si alguna
es…………….. de él.




Profesora Mariana Bustamante
€4,49
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
maribustamante

Document également disponible en groupe

Faites connaissance avec le vendeur

Seller avatar
maribustamante Mates con Mari
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
0
Membre depuis
3 année
Nombre de followers
0
Documents
7
Dernière vente
-

0,0

0 revues

5
0
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions