Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Samenvatting Overzicht bewijzen (en eigenschappen) wiskunde met bedrijfseconomische toepassingen 1

Vendu
1
Pages
28
Publié le
30-07-2022
Écrit en
2021/2022

Dit is een volledig overzicht van alle bewijzen en eigenschappen die te kennen zijn voor de examens (1e en 2e semester) van het vak Wiskunde met bedrijfseconomische toepassingen, gegeven in 1e bachelor TEW door professor Ann De Schepper

Montrer plus Lire moins










Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Infos sur le Document

Publié le
30 juillet 2022
Nombre de pages
28
Écrit en
2021/2022
Type
Resume

Aperçu du contenu

Overzicht bewijzen en eigenschappen Wiskunde 1

WISKUNDE MET (BEDRIJFS)ECONOMISCHE TOEPASSINGEN 2021-
2022 BEWIJZEN semester 1
O 5.3.1 GEMIDDELDE WAARDE VERSUS MARGINALE WAARDE (P. 131)
o Als we de afgeleide van de gemiddelde functie berekenen, dan vinden we

o
d
dx
(⟨ f ⟩ ( x ) ) = d ( )
f (x ) x ∙ f ' ( x )−f ( x )
dx x
=
x
2



Omdat de noemer enkel een kwadraat bevat, wordt het teken van de breuk bepaald door de teller.
Er geldt:

d
 Als de gemiddelde functie stijgt, dan is (⟨ f ⟩ ( x ) ) ≥ 0
dx

' ' f (x)
Hieruit volgt dat x ∙ f ( x ) of f ( x ) ≥
x
d
 Als de gemiddelde functie daalt, dan is (⟨ f ⟩ ( x ) ) ≤ 0
dx

' f (x)
Hieruit volgt dat x ∙ f ' ( x ) ≤ f ( x ) of f ( x ) ≤
x
d
 Als de gemiddelde functie een lokaal extremum bereikt, dan is ( ⟨ f ⟩ ( x ) ) =0
dx

' f (x)
Hieruit volgt dat x ∙ f ' ( x )=f ( x ) of f ( x )=
x
O 8.2.3. AFLEIDEN VAN IMPLICIETE FUNCTIES (P. 169)
o Wanneer de vergelijking van een functie met één onafhankelijke veranderlijke gegeven is in een
impliciete vorm F ( x , y )=0, dan kan de afgeleide voor de (onbekende) expliciete vorm y=f ( x ) in
'
' −F x ( x 0 , y 0 )
een punt x 0 gevonden worden als f ( x 0 )= met y 0 bepaald door F ( x 0 , y 0 )=0 ,
F'y ( x 0 , y 0 )
o voor zover de functie f gedefinieerd is en de partiële afgeleide in de noemer verschilt van nul.
o Je kan dit terugvinden door te vertrekken vanuit de totale differentiaal (hier in de verkorte notatie):
o F ( x , y )=0
o ⇓
o dF ( x , y )=0
o ⇓
' '
o F x dx+ F y dy=0
o ⇓
' '
o F y dy =−F x dx
o ⇓

, '
dy −F x
o = '
dx Fy
O
O
O
O 8.2.3. AFLEIDEN VIA IMPLICIETE FUNCTIES (P. 170)
O Eigenschap 8.6 (Impliciete functie  F ( x , y , z )=0 )
O Wanneer de vergelijking van een functie met twee onafhankelijke veranderlijken gegeven is in
O een impliciete vorm F ( x , y , z )=0 , dan kunnen de partiële afgeleiden voor de (onbekende)
O expliciete vorm z=f ( x , y ) in een punt ( x 0 , y 0 ) gevonden worden als
'
O
' −F x ( x 0 , y 0 , z 0 )
O
f ( x0, y0)=
x
F 'z ( x0 , y 0 , z 0 )
O '
' −F y ( x 0 , y 0 , z 0 )
O f ( x 0 , y 0 )=
y '
F z ( x0 , y0 , z0 )
O
met z 0 bepaald door F ( x 0 , y 0 , z 0 )=0,
O

Ook dit resultaat kan je terugvinden vanuit de totale differentiaal (hier opnieuw in verkorte notatie),
nu voor de drie veranderlijken:

F ( x , y , z )=0

O dF ( x , y , z )=0
O

O
' ' '
O F x dx+ F y dy + F z dz=0
O ⇓
O
F 'z dz=−F 'x dx−F 'y dy
O

O
O −F 'x F 'y
dz= dx− dy
O F 'z F'z
O

O
' '
∂ z −F x ∂ z −F y
O = ' en = '
∂x Fz ∂y Fz
O
O
O GEVOLG 8.1. (RAAKLIJN) (P. 171)
o De vergelijking van de raaklijn in het punt P=( x0 , y 0 ) aan de curve met impliciete vergelijking
F ( x , y )=0 luidt F 'x ( x0 , y 0 ) ( x−x 0 ) + F'y ( x 0 , y 0 )( y− y 0 ) =0

, o Voor zover alle partiële afgeleiden bestaan.
o Om dit aan te duiden vertrekken we van de vergelijking voor de raaklijn zoals we ze eerder vonden:
y− y 0=f ' ( x 0 ) ( x−x 0 ), met f de (onbekende) expliciete functie die bij de curve hoort.
o We weten nu dat
'
' −F x ( x 0 , y 0 )
o f ( x 0 )= '
F y ( x0 , y0 )
o
o
o Invullen in de vergelijking van de raaklijn geeft
'
−F x ( x 0 , y 0 )
o y− y 0= ' ( x−x 0 )
F y ( x0 , y0)
o De noemer wegwerken geeft
o F 'y ( x 0 , y 0 )( y− y 0 ) =−F'x ( x 0 , y 0 ) ( x−x 0 );
brengen we alles aan één kant van het gelijkheidsteken, dan vinden we inderdaad het vermelde
resultaat.

O GEVOLG 8.2. (RAAKVLAK) (P. 172)
O De vergelijking van het raakvlak in het punt P=( x0 , y 0 , z 0 ) aan het oppervlak met impliciete
vergelijking F ( x , y , z )=0 luidt
O F 'x ( x0 , y 0 , z 0 )( x−x 0 ) + F 'y ( x0 , y 0 , z 0 ) ( y− y 0 ) + F'z ( x 0 , y 0 , z 0 ) ( z−z 0 ) =0
o Voor zover alle partiële afgeleiden bestaan.
o
Om dit aan te tonen vertrekken we van de vergelijking voor het raakvlak zoals we ze eerder zagen:
z−z 0=f 'x ( x 0 , y 0 )( x −x0 ) + f 'y ( x 0 , y 0 ) ( y − y 0 )
met f de (onbekende) expliciete functie die bij het oppervlak hoort.
We weten nu dat
'
' −F x ( x 0 , y 0 , z 0 )
f ( x0, y0)=
x '
F z ( x0 , y 0 , z 0 )
o en dat
−F 'y ( x 0 , y 0 , z 0 )
f 'y ( x 0 , y 0 )= '
F z ( x 0 , y0 , z0 )
o Invullen in de vergelijking van het raakvlak geeft
' '
−F x ( x 0 , y 0 , z 0 ) F y ( x0 , y0 , z0 )
o z−z 0= ' ( x−x 0 )− ' ( y− y 0 )
F z ( x0 , y0 , z0 ) F z ( x0 , y 0 , z 0 )
De noemer wegwerken geeft
' ' '
F z ( x 0 , y 0 , z 0 )( z −z 0 )=−F x ( x 0 , y 0 , z 0 )( x −x0 ) −F y ( x 0 , y 0 , z 0 ) ( y− y 0 ) ;
brengen we alles aan één kant van het gelijkheidsteken, dan vinden we inderdaad het vermelde
resultaat.
O
O 8.3.1. SAMENGESTELDE FUNCTIES (P. 174)
€7,99
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Reviews from verified buyers

Affichage de tous les avis
2 année de cela

4,0

1 revues

5
0
4
1
3
0
2
0
1
0
Avis fiables sur Stuvia

Tous les avis sont réalisés par de vrais utilisateurs de Stuvia après des achats vérifiés.

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
louiseevens Universiteit Antwerpen
Voir profil
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
148
Membre depuis
3 année
Nombre de followers
103
Documents
20
Dernière vente
2 semaines de cela

3,9

10 revues

5
2
4
5
3
3
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions