Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4,6 TrustPilot
logo-home
Resume

Samenvatting Hoofdstuk 5: Genererende Functies

Note
-
Vendu
-
Pages
7
Publié le
27-07-2022
Écrit en
2020/2021

Dit is de samenvatting van het vijfde hoofdstuk van het vak Discrete Wiskunde. In deze samenvatting werd zowel alle informatie uit de slides als bijkomende informatie uit eigen notities en de cursustekst opgenomen.










Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Infos sur le Document

Publié le
27 juillet 2022
Nombre de pages
7
Écrit en
2020/2021
Type
Resume

Sujets

  • genererende functies

Aperçu du contenu

Hoofdstuk 5: Genererende functies
1 Voorbeelden en definitie
Voorbeeld:
Een moeder koopt 12 snoepjes en wil die verdelen onder haar drie kinderen: Piet, Andres en Jan. Wel
zo dat Piet er minstens 4 krijgt, Andres en Jan minstens 2 en Jan hoogstens 5.

Noteren we cP , cA en cJ voor het aantal snoepjes dat Piet, Andres en Jan respectievelijk krijgen,
hebben we cP + cA + cJ = 12 en cP >= 4, cA >= 2 en 5 >= cJ >= 2.

We kunnen alle oplossingen opschrijven:




We hebben dus 12 op alle mogelijke manieren geschreven als som van drie natuurlijke getallen die
voldoen aan de voorwaarden. Dit doen we eigenlijk ook als we de distributiviteit toepassen bij het
uitwerken van volgend product van veeltermen:



De eerste factor komt overeen met het feit dat de toegelaten waarden voor cP enkel 4, 5, 6, 7 en 8
zijn. De tweede factor ontstaat uit de opmerking dat een oplossing steeds een cA zal hebben in {2, 3,
4, 5, 6}. In het product komt de coëfficiënt van x12 overeen met alle mogelijke manieren om x12 te
bekomen door een term te nemen in elk van de drie factoren. Dus is de oplossing van het vraagstuk
ook de coëfficiënt van x12 in het product van veeltermen.

Tweede voorbeeld:
We hebben grote hoeveelheden knikkers van vier kleuren : rood, groen, wit en zwart. Op hoeveel
manieren kan je 24 knikkers kiezen zo dat er een even aantal witte is en minstens 6 zwarte.

We maken een veelterm die een factor heeft voor elke kleur. Op de rode of groene knikkers is er
geen beperking : er kunnen geen, 1, 2, . . . , 17 of 18 (niet meer want minstens 6 knikkers zijn zwart)
knikkers zijn van die kleur. Dit geeft voor beide kleuren een factor (1+x+x2+· · ·+x18). De factor van de
witte knikkers bevat enkel even machten : (1+x2+x4+· · ·+x18). Aangezien er minstens 6 zwarte
knikkers zijn, krijgen we een factor (x6+x7+· · ·+x24).

Het antwoord op de vraag is dus gelijk aan de coëfficiënt van x24 in het product:




Definitie:
Zij a0, a1, a2, . . . een rij van reële getallen. De genererende functie voor die rij is per definitie


𝑓(𝑥) = 𝑎0 + 𝑎1 𝑥 + 𝑎2 𝑥 + ⋯ = ∑ 𝑎𝑖 𝑥 𝑖
2

𝑖=0




1

, Voorbeeld:
𝑛 𝑛 𝑛 𝑛 𝑛
De genererende functie van de rij ( ) , ( ) , ( ) , … , ( ) , 0,0, … is ∑𝑛𝑖=0( )𝑥 𝑖 = (1 + 𝑥)𝑛 .
0 1 2 𝑛 𝑖
Voorbeeld:
We weten zeer goed dat (1 − x)(1 + x + x2 + · · · + xn) = 1 − xn+1 , waaruit volgt

1 − 𝑥 𝑛+1
= 1 + 𝑥 + 𝑥2 + ⋯ + 𝑥𝑛
1−𝑥
Bijgevolg is bovenstaande breuk een een genererende functie voor de rij 1,1,1,…,1,0,0… (n+1 enen).

Voorbeeld:




2 Veralgemeende binomiaalcoëfficiënten
Wat is het volgende getal in de rij 0, 2, 6, 12, 20, 30, 42 …?

Merk op dat →




2

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
lennyS Vrije Universiteit Brussel
Voir profil
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
163
Membre depuis
5 année
Nombre de followers
62
Documents
34
Dernière vente
1 mois de cela

4,5

6 revues

5
4
4
1
3
1
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions