Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Notes de cours

Lecture notes Probability Theory II (STA211)

Note
-
Vendu
-
Pages
15
Publié le
04-07-2022
Écrit en
2021/2022

This course is designed primarily for students in mathematics, pure and applied sciences. However, it also meets the need of students in other fields. The course’s focus is to educate the student on the basic principles and applications of probability; several probability concepts and techniques; and how to employ them in making generalisations and decisions on social, health and related issues. Topics to be covered include: Probability - Discrete sample spaces, definitions and rules of probability, combinatorial analysis, conditional probability, independence, and Bayes’ theorem; Mean and variance of some discrete probability distribution – Bernoulli distribution; Binomial distributions, Poisson distributions; Discrete uniform distribution, geometric distribution; hyper-geometric distribution; Application of some discrete probability distribution - Binomial distribution, Poisson distribution, negative binomial distribution, geometric distribution, hyper-geometric distribution, multi-normal distribution; Mean and variance of some continuous probability distribution – uniform or rectangular distribution, exponential distribution; Sampling with and without replacement.

Montrer plus Lire moins
Établissement
Cours









Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours

Infos sur le Document

Publié le
4 juillet 2022
Nombre de pages
15
Écrit en
2021/2022
Type
Notes de cours
Professeur(s)
Daniel deborah
Contient
Toutes les classes

Sujets

Aperçu du contenu

SOUTHWESTERN UNIVERSITY, NIGERIA
STA 211 – PROBABILITY II
Lecture Note by DANIEL Deborah O.

COURSE OUTLINE

Probability - Discrete Sample Spaces, Definitions and Rules of Probability, Combinatorial
Analysis, Conditional Probability, Independence, and Bayes’ Theorem;

Mean and Variance of Some Discrete Probability Distribution – Bernoulli Distribution; Binomial
Distributions, Poisson Distributions; Discrete Uniform Distribution, Geometric Distribution;
Hyper-Geometric Distribution;

Application Of Some Discrete Probability Distribution - Binomial Distribution, Poisson
Distribution, Negative Binomial Distribution, Geometric Distribution, Hyper-Geometric
Distribution, Multinomial Distribution;

Mean and Variance of Some Continuous Probability Distribution – Uniform or Rectangular
Distribution, Exponential Distribution;

, PROBABILITY

Definition of basic concepts
Sample Space: it is the collection of all possible outcomes of an experiment. For example, in
a single throw of a fair die, the sample space is S ={1,2,3,4,5,6}
Event: An event is a collection of outcomes. For instance in the experiment involving a single
throw of a die, the event that an even number turns up is E ={2,4,6}
Probability: Probability is a quantitative measure of the chances or likelihood or expectation
of the occurrence of an event. The values are between 0 and 1. An event that is certain to
occur has probability 1while the event that is certain not to occur has probability 0
Null Event: This is an event that does not contain any outcome, i.e. the outcome is an empty
set, e. g., in two throws of a die, the event that the sum of the numbers that turn up will be 15
is a null event. The probability of a null event is zero.
Independent Events: Two events, A and B are independent when the occurrence or non-
occurrence of one does not affect the occurrence or non-occurrence of the other. For example,
in two throws of a die, the outcome of the first throw does not affect the outcome of the second
throw. The joint probability of the two independent events is the product of their individual
probabilities, i.e.
Mutually Exclusive Events: Two events A and B are mutually exclusive when the occurrence
of one prevents the occurrence of the other, in other words, the two events don’t have any
outcomes in common, and their intersection is a null or an empty set. For instance, in a single
toss of a coin, the event that
“head” turns up, say A, A ={H}and the event that “tail” turns up, say B, B  {T } , 𝐴 and 𝐵
are mutually exclusive events.
Classical Definition of Probability
Let S be the sample space containing all the n S( ) possible equally likely outcomes of an
experiment and let E be an event consisting of a set of n E( ) such outcomes; then the
probability of event E is defined as
n( E )
P( E ) 
n( S )
Laws of Probability
There are two major laws of probability; the multiplication law and the addition law
€8,74
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
DaprimeEduConsult

Faites connaissance avec le vendeur

Seller avatar
DaprimeEduConsult Southwestern University
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
0
Membre depuis
3 année
Nombre de followers
0
Documents
10
Dernière vente
-
Daprime Edu Consult

Daprime Edu Consult seeks to help students improve their mathematical concepts about real life situations, understand basic mathematical concepts, topic and ensure they passed their exams successfully

0,0

0 revues

5
0
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions