Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Notes de cours

HCM Advanced Research Methods part 3: Combining methods (lectures/working groups)

Note
-
Vendu
3
Pages
14
Publié le
03-07-2022
Écrit en
2021/2022

Notes of the lectures and working groups from the third part of the course: advanced research methods. In this part the quantitative and qualitative methods are combined. My exam grade: 7.8 Master Healthcare Management.

Établissement
Cours









Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Publié le
3 juillet 2022
Nombre de pages
14
Écrit en
2021/2022
Type
Notes de cours
Professeur(s)
Eshpm
Contient
Toutes les classes

Sujets

Aperçu du contenu

Combining quantitative and qualitative methods – Advanced Research Methods – Joyce Rommens


Lecture 6: Synthesis: quantitative and qualitative methods

Quantitative part

Objectives segment 1:
- Explain the three different goals for quantitative research (associations)
- Explain how the strategy for descriptive research differs from the strategy for causal inference

1960-2010: methodological development focused on statistical methods
- Development of new techniques
- Improvements in computers and software
- Standardized tests, ‘objectivity’
- Helpful and harmful ® we can do more and better research, but people stopped thinking
themselves and rely on the software

® Associations can be seen in the data, but it is nothing more. What do they mean is up to the
researcher to determine.

Newer developments (not black and white)
- Causal theory
- What should be part of quantitative analysis?
- Interpretation: meaning of results depends on context

The largest part of a quantitative analysis is not about numbers.

Three possible aims to investigate associations:
- Causal inference
- Prediction
- Description

Distinguishing them makes sense, they have crucial differences in design, statistical methods,
interpretation, evaluation, role for theory/subject knowledge.

Causal inference Prediction Description
Goal Find causal effects Predict the future (or the past, or Describe patterns
- Counterfactual the current) - Identify patterns in
prediction: what if - Given what you observe the data
- Not only about what is, - No if - Matter of fact, goal
but also about what - What, given in itself
could be If you know A/B/C, what can you ® Potential starting point
say about D? for policy or further
(causal) research
Example 1. How does Netflix know what Excess mortality due to
films I like? ® watching one film coronavirus in different
makes it more likely that you will countries
like the other one too
2. Diagnosis: recognizing a
disease by the symptoms (reverse
causality a problem? ® no
because this is not about causal
inference)



1

, Combining quantitative and qualitative methods – Advanced Research Methods – Joyce Rommens


Research Why do some groups put more What kind of people will want Which groups are less open
questions value on screening than others: screening in the future? to screening?
causal inference (mediation
analysis) Background: What should the Background: In which
screening capacity in different groups could extra
Background: areas be? promotion be important?
development/testing of theory,
role of culture
Methods 1. Theory Driven 1. May be data driven: try what Bivariate associations:
2. DAG’s (exchangeability) works - Proportions/means
3. To block backdoor paths 2. Regression analysis can be /ratios per group
(randomisation, regression, used ® equation can be used for - Continuous
stratification, predictions on the individual level independent
weighting/matching) (with the first dataset, you variable ®
4. Consider blocking causal develop the regression equation correlation
paths (mediation) to predict outcomes in the coefficient
second dataset) (outdated, not
® sophisticated methods for intuitive); corm
regression may be required categories of
(prevent overfitting, the equation continuous
fits a certain dataset so well that independent
it is less suited for another variable; regression
dataset) with one
independent
No randomisation ® you do not variable
want to interfere.

No stratification ® will probably
not lead to precise predictions.

No weighting/matching ® would
require defining one exposure
Adjustment Yes! Otherwise, the results are No! This would obscure,
s affected by confounding bias remove, or increase the
due to a lack of exchangeability associations.
Results have no
interpretation anymore.
Interpretati Results have intrinsic meaning: Usually, no interest in 1. Direct, intuitive
on - Coeff represents interpretation of coeff for interpretation of
estimates of the individual predictors. Not useful: comparison of
(average) effect test whether there is an means/proportions/ratios
- Coeff in OLS association. 2. OLS coefficient
- Adjusted proportions - No clear intrinsic meaning
(average adjusted - No causal interpretation
predicted probabilities) - Coeff: ‘people with A were more
- RR, RD likely to have B/higher B, given all
- How strong is the other variables’
association?
CI Performance is crucial: evaluation
P-value may play a role of the model.




2
€5,99
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien


Document également disponible en groupe

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
joycerommens Erasmus Universiteit Rotterdam
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
81
Membre depuis
6 année
Nombre de followers
48
Documents
29
Dernière vente
2 semaines de cela

2,7

6 revues

5
0
4
1
3
3
2
1
1
1

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions