Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Samenvatting h8 : limieten en continuïteit

Note
-
Vendu
1
Pages
5
Publié le
15-06-2022
Écrit en
2021/2022

Deze samenvatting is gebaseerd op het boek delta nova analyse deel 2 5 maar je kan ze ook zeker gebruiken als je een ander boek hebt. In de samenvatting staat de theorie maar ook stappenplannen van hoe je de oefeningen zou moeten maken.

Montrer plus Lire moins
Établissement
3rd Degree









Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Lycée
Cours
3rd degree
Année scolaire
5

Infos sur le Document

Livre entier ?
Non
Quels chapitres sont résumés ?
Hoofdstuk 8
Publié le
15 juin 2022
Nombre de pages
5
Écrit en
2021/2022
Type
Resume

Aperçu du contenu

H8 LIMIETEN EN CONTINUÏTEIT

8.1 LIMIETEN

Informele limiet ‘steeds dichter’, ‘voldoende dicht naderen tot’
en ‘onbeperkt toe- of afnemen’ niet exact
gedefinieerd is
linkerlimiet lim f ( x )
x→ a
¿
rechterlimiet lim f ( x )
x→ a
¿
Verband tussen limiet, linkerlimiet en lim f ( x ) = b
x→ a
rechterlimiet

lim f ( x ) lim f ( x )
x→ a = x→ a =b
¿ ¿
8.2 LIMIETEN BEREKENEN

8.2.1 FUNDAMENTELE LIMIETEN

F(x) = c : lim
x→ a
f (x ) = c

F(x) = x : lim f ( x ) = a
x→ a

F(x) = 1/x : lim f ( x ) = 1/a met a≠0
x→ a
8.2.2 REKENREGELS VOOR EINDIGE LIMIETEN

Definitie eindige limieten Indien lim f ( x ) = b met b
x→ a
∈ R , dan noemen we lim f (x ) een eindige
x→ a
limiet
Rekenregels - De limiet van een som is de som van de
limieten
- De limiet van een verschil is het verschil
van de limieten
- De limiet van een product is het
product van de limieten
- De limiet van een veelvoud is het
veelvoud van de limiet
- De limiet van een quotiënt is het
quotiënt van de limieten
- De limiet van een macht met rationale
exponent is de macht van de limiet
De limiet van een som is de som van de limieten lim ¿ ¿ + g(x)) = lim f ( x ) + lim g ( x)
x→ a x→ a x→ a
: in symbolen
De limiet van een verschil is het verschil van de lim ¿ – g(x)) = lim f (x ) - lim g ( x)
x→ a x→ a x→ a
limieten : in symbolen
De limiet van een product is het product van de lim ¿ ¿ * g(x)) = c * lim g ( x)
x→ a x→ a
limieten : in symbolen
De limiet van een veelvoud is het veelvoud van lim (r∗f ( x)) = r* lim f (x )
x→ a x→ a
de limiet : in symbolen

, De limiet van een quotiënt is het quotiënt van lim f ( x)
f (x) x →a
de limieten : in symbolen lim = als lim g (x) ≠ 0
x→ a g(x ) lim g( x ) x→ a
x →a
De limiet van een macht met rationale lim ( f ( x ) ) = ( lim f ( x ))q (q∈Q 0 ¿ als
q

exponent is de macht van de limiet : in x→ a x →a
q
symbolen ( lim f ( x )) gedefineerd is
x →a
8.2.3 REKENREGELS VOOR ONEINDIGE LIMIETEN

Definitie oneindige limieten Is lim f ( x ) = + ∞ of lim f (x )= -∞ , dan noemen
x→ a x→ a

we lim f ( x ) een oneindige limiet
x→ a
Eerste rekenregel en symbolische notatie Als lim f ( x ) = + ∞ en lim g ( x) = + ∞ , dan is
x→ a x→ a
lim ( f ( x ) + g ( x )) = + ∞
x→ a

En lim ( f ( x )∗g ( x ) ) = + ∞
x→ a
(+∞ ¿+ (+∞ ) = +∞
(-∞ ) + (-∞ ) = -∞
(+∞ ¿- (-∞ ) = +∞
(-∞ ) – (+∞ ¿=¿ -∞
r + (+∞ ) = (+∞ ) + r = ∀r∈R +∞
r + (-∞ ) = (-∞ ) + r = ∀r∈R -∞
r – (+∞ ) = ∀r ∈R -∞
r – (-∞ ) = ∀r∈R +∞
√n +∞ = met n ∈ N 0 +∞
√n −∞ = met n ∈ N 0 -∞
(+ ∞)q = met q +∞
+¿ ¿
∈Q 0
(+∞ ) * (+∞ )= +∞
(-∞ ) * (-∞ ) = +∞
(+∞ ) * (-∞ ) = -∞
(-∞ ) * (+∞ ) = -∞
r * (+∞ ) = (+∞ ) * r = +∞
∀ r ∈ R+¿¿
0
r* (+∞ ) = (+∞ ) * r = -∞
∀ r ∈ R−¿0
¿


r * (-∞ ) = (-∞ ) * r = -∞
∀ r ∈ R+¿¿
0
r * (-∞ ) = (-∞ ) * r = +∞
∀ r ∈ R−¿0
¿

r r 0
= =∀ r ∈ R
+ ∞ −∞
+∞ +∞
=¿
r
∀ r ∈ R+¿¿
0
−∞ -∞
=¿
r
+¿¿
∀ r ∈ R0
€2,99
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
hannevanlandeghem
Voir profil
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
98
Membre depuis
3 année
Nombre de followers
18
Documents
81
Dernière vente
1 jours de cela

3,7

12 revues

5
5
4
1
3
4
2
1
1
1

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions