H1 MATRICES
1.1 DEFINITIES EN BEGRIPPEN
matrix Is een rechthoekig rooster van de vorm
Dimensie van een matrix Een matrix met m rijen en n kolommen
rij Van boven naar onder
kolom Van links naar rechts
Hoe schrijf je dit mXn
Element van de matrix Een getal in de matrix
Waar staat het element a ij Op de i de rij in de j de kolom
Vierkant matrix Een matrix met evenveel rijen als kolommen
Hoe heet dit Matrix van de n-de orde
Of Van orde n
vb
Diagonaalelementen De elementen a 11 , a22 ,a 33 …van een vierkante
matrix
Vormen samen Hoofddiagonaal
diagonaalmatrix Een vierkante matrix waarvan de elementen die
niet op de hoofddiagonaal staan, 0 zijn
Vb
Geldt als a ij = 0 als i ≠ j
Symmetrische matrix Een vierkante matrix waarbij de elementen die
symmetrisch liggen ten opzichte van de
hoofddiagonaal, gelijk zijn
Vb
Geldt als Voor elke i en j geldt : a ij=¿ a ji
rijmatrix Een matrix met slechts één rij
vb
kolommatrix Een matrix met slechts één kolom
vb
nulmatrix Een matrix waarvan alle elementen 0 zijn en
, wordt genoteerd als 0. Voor elke dimensie is er
een bijbehorende nulmatrix
vb
Gelijke matrices We noemen 2 matrices gelijk als en slechts als
ze dezelfde dimensie hebben en hun
overeenkomstige elementen gelijk zijn.
In symbolen Als A,B ϵ Rm xn, dan geldt: A = B ⇔ a ij=bij voor
elke i en j
1.2 BEWERKINGEN MET MATRICES
1.2.1 OPTELLEN VAN MATRICES
Definitie optelbare matrices 2 matrices A en B kun je enkel optellen als ze
dezelfde dimensie hebben
symbolen Als A,B ϵ Rm xn , dan geldt: A + B
m xn
ϵ R met c ij + bijvoor elke i en j
Eigenschappen - De optelling van matrices is
commutatief
- De optelling van matrices is associatief
- Er bestaat een neutraal element voor
de optelling van matrices
- Tegengestelde matrix
De optelling is commutatief : symbolen ∀ A, B ϵ Rm xn : A +B = B + A
De optelling is associatief : symbolen ∀ A, B, C ϵ Rm xn : (A + B) + C = A + (B+C)
Er bestaat een neutraal element voor de 0 ϵ Rm xn en ∀ A ϵ Rm xn : A + 0 = A
optelling : symbolen
Tegengestelde matrix of Invers element
symbolen ∀ A ϵ Rm xn : - A ϵ Rm xn en A + (-A) = 0
Verschil van 2 matrices : symbolen ∀ A, B ϵ Rm xn : A – B = A +(-B)
1.2.2 VERMENIGVULDIGEN VAN EEN MATRIX MET EEN GETAL
Definitie Scalaire vermenigvuldiging Het product van een reëel getal r met een
matrix A is een matrix r*A met dezelfde
dimensie als die van A
De elementen van r*A worden verkregen door
alle elementen van A met r te vermenigvuldigen
❑
symbolen Als A ϵ Rm xn en r ϵ R , dan is C = r*A ϵ Rm xn
met c ij = r *a ij voor elke i en j
notatie r*A = rA
Eigenschappen - De scalaire vermenigvuldiging is
distributief ten opzichte van de
optelling van matrices
- De scalaire vermenigvuldiging is
distributief ten opzichte van de
optelling van reële getallen
- De scalaire vermenigvuldiging is
gemengd associatief
Distributief ten opzicht van de optelling van ∀ A, B ϵ Rm xn : r * (A+B) = r * A + r * B
matrices : symbolen
1.1 DEFINITIES EN BEGRIPPEN
matrix Is een rechthoekig rooster van de vorm
Dimensie van een matrix Een matrix met m rijen en n kolommen
rij Van boven naar onder
kolom Van links naar rechts
Hoe schrijf je dit mXn
Element van de matrix Een getal in de matrix
Waar staat het element a ij Op de i de rij in de j de kolom
Vierkant matrix Een matrix met evenveel rijen als kolommen
Hoe heet dit Matrix van de n-de orde
Of Van orde n
vb
Diagonaalelementen De elementen a 11 , a22 ,a 33 …van een vierkante
matrix
Vormen samen Hoofddiagonaal
diagonaalmatrix Een vierkante matrix waarvan de elementen die
niet op de hoofddiagonaal staan, 0 zijn
Vb
Geldt als a ij = 0 als i ≠ j
Symmetrische matrix Een vierkante matrix waarbij de elementen die
symmetrisch liggen ten opzichte van de
hoofddiagonaal, gelijk zijn
Vb
Geldt als Voor elke i en j geldt : a ij=¿ a ji
rijmatrix Een matrix met slechts één rij
vb
kolommatrix Een matrix met slechts één kolom
vb
nulmatrix Een matrix waarvan alle elementen 0 zijn en
, wordt genoteerd als 0. Voor elke dimensie is er
een bijbehorende nulmatrix
vb
Gelijke matrices We noemen 2 matrices gelijk als en slechts als
ze dezelfde dimensie hebben en hun
overeenkomstige elementen gelijk zijn.
In symbolen Als A,B ϵ Rm xn, dan geldt: A = B ⇔ a ij=bij voor
elke i en j
1.2 BEWERKINGEN MET MATRICES
1.2.1 OPTELLEN VAN MATRICES
Definitie optelbare matrices 2 matrices A en B kun je enkel optellen als ze
dezelfde dimensie hebben
symbolen Als A,B ϵ Rm xn , dan geldt: A + B
m xn
ϵ R met c ij + bijvoor elke i en j
Eigenschappen - De optelling van matrices is
commutatief
- De optelling van matrices is associatief
- Er bestaat een neutraal element voor
de optelling van matrices
- Tegengestelde matrix
De optelling is commutatief : symbolen ∀ A, B ϵ Rm xn : A +B = B + A
De optelling is associatief : symbolen ∀ A, B, C ϵ Rm xn : (A + B) + C = A + (B+C)
Er bestaat een neutraal element voor de 0 ϵ Rm xn en ∀ A ϵ Rm xn : A + 0 = A
optelling : symbolen
Tegengestelde matrix of Invers element
symbolen ∀ A ϵ Rm xn : - A ϵ Rm xn en A + (-A) = 0
Verschil van 2 matrices : symbolen ∀ A, B ϵ Rm xn : A – B = A +(-B)
1.2.2 VERMENIGVULDIGEN VAN EEN MATRIX MET EEN GETAL
Definitie Scalaire vermenigvuldiging Het product van een reëel getal r met een
matrix A is een matrix r*A met dezelfde
dimensie als die van A
De elementen van r*A worden verkregen door
alle elementen van A met r te vermenigvuldigen
❑
symbolen Als A ϵ Rm xn en r ϵ R , dan is C = r*A ϵ Rm xn
met c ij = r *a ij voor elke i en j
notatie r*A = rA
Eigenschappen - De scalaire vermenigvuldiging is
distributief ten opzichte van de
optelling van matrices
- De scalaire vermenigvuldiging is
distributief ten opzichte van de
optelling van reële getallen
- De scalaire vermenigvuldiging is
gemengd associatief
Distributief ten opzicht van de optelling van ∀ A, B ϵ Rm xn : r * (A+B) = r * A + r * B
matrices : symbolen