Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Notes de cours

Aantekeningen lectures MVDA (6462PS009)

Note
-
Vendu
-
Pages
14
Publié le
14-06-2022
Écrit en
2021/2022

Aantekeningen van alle hoorcolleges van het vak MVDA (6462PS009).

Établissement
Cours









Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Publié le
14 juin 2022
Nombre de pages
14
Écrit en
2021/2022
Type
Notes de cours
Professeur(s)
Jr van ginkel
Contient
Toutes les classes

Sujets

Aperçu du contenu

Huiswerk = opdracht 1 & 2 van iedere week. Formuleblad op Brightspace.

Week 1: Multipele regressie analyse
Multivariatie = 3 of meer variabelen. Technieken week 1 tm 4  1 afhankelijke variabele Y en
meerdere onafhankelijke variabelen X1, X2, … (predictoren).

X1, X2 Y Techniek Afkorting
Interval Interva Multipele regressie analyse MRA
l
Nominaal Interva Variantie analyse ANOVA
l
Nominaal + Interva Covariantie analyse ANCOVA
interval l
Interval Binair Logistische regressie analyse LRA
X1 en X2 kunnen ook binair zijn. Wanneer Y binair is, dan LRA. ZET OP SPIEKBRIEF!

Regressie model
Kan Y voorspeld worden uit X1 en X2? Een model dat goed werkt: afhankelijke variabele Y is een
lineaire functie van voorspellers X1 en X2.
Regressie model: Simpele regressie Yi = B0 + B1X1 + e1. Multipele regressie: Yi = B0 + B1X1i + B2X2i +
… + BkXki + ei.
Hier is b0 de regressie constante, B 1 en bk zijn regressie coëfficiënten. X 1 en Xk en Yi zijn de scores van
persoon i. ei is een residu (error) (= individuele afwijking van bepaald persoon tot regressiemodel).
Populatiewaarde geef je aan met *. Parameters* schatten met “kleinste kwadratenprincipe”, kan met
SPSS. Op basis van de steekproef probeer je dus de populatieparameters * te schatten.

Waarom:
- Kan de relatie tussen Y en X1 en X2 beschrijven in de populatie
- Kan gebruikt worden om de Y-score van mensen niet in de populatie te voorspellen.

Bij een enkelvoudige regressie fit je een rechte lijn waar de residuen minimaal zijn. Bij een
meervoudige regressie gebruik je een vlak.

^ i is de voorspelling van Yi. Relatie: Y i=Y^ i + ei . De beste voorspelling is
Regressie vergelijking  Y
N N
gegeven wanneer de kwadratensommen minimaal zijn: ∑ (Y i−Y^ i ) =∑ e i
2 2
(= kleinste
i=1 i=1
kwadratenprincipe).

Hypotheses: H0: B1 = B2 = … = Bk = 0. Ha: ten minste Bj ≠ 0.
MSregressie MS g
Toetsen met F-toets: F= = . Data= model + error (zie ECO).
MS residu MST

VAF: Na het maken van je model, moet je kijken hoe goed je model is.
2 2
R + R −2r
y1 y2 r y 2r y 12
R2=R 2y .12= 2
y1
. Hier is R de multipele correlatie coëfficiënt en de Pearson correlatie
1−r 12
tussen Y en een combinatie van X 1 en X2. Waarde ligt tussen 0 en 1. R 2 = VAF = hoeveel variantie van


1

, Y verklaard wordt door X1 en X2 en beschrijft hoe goed het lineaire model de data beschrijft.
2 SS regression
R =VAF = = Pearson2.
SS total

SPSS geeft voor elke predictor een B + standaarddeviatie en een T-toets + significantie. Hier kan je
aan aflezen welke predictor in je model significant is en welke niet.

X −μ
Gestandaardiseerde regressievergelijking: Alle variabelen standaardiseren met z= .
σ

Kijk hoe belangrijk een predictor is door de part correlation in SPSS. Partiële correlatie van een
predictor laat zien hoeveel variantie van Y verklaard wordt door de predictor en niet door andere
variabelen in de analyse.

Assumpties zijn nodig voor de sampling verdeling, kan uitgelegd worden in residuen. Wanneer ze
geschaad worden is er vaak geen effect op de residuen of coëfficiënten, maar wel op de
standaardfouten. Dan trek je foute conclusies over de significantie. Assumpties zeggen wat over de
populatie en kunnen dus niet direct getest worden, maar daarom check je het in je sample en met
grafische tools en tests. Heeft invloed op teststatistieken, p-waardes en daarom verkeerde conclusies.
Assumpties  Met een lineair model hebben variabelen een interval meetniveau. Test de
homoscedasticiteit, onafhankelijkheid van residuen, normaliteit van samples. Multicollinairiteit van
predictoren (=moderate tot hoge inter-correlatie tussen predictoren).
Bij homoscedasticiteit = variantie van residuen zijn constant tussen waardes predictoren.
Heteroscedasticiteit heeft effect op standaardfouten van regressiecoëfficiënten.

Outliers  verschillende soorten zijn outliers op afhankelijke variabele Y, op onafhankelijke
variabele X, op influentiële data punten. Geen scores extremer dan voorspeld (standaard residu < |3|),
geen influentiële punten (Cook’s < 1), geen outliers op predictoren (leverage <3(P+1)/N).

Wanneer assumpties geschonden  selectiepredictoren = model selectie. Het controleren van
assumpties is onderdeel van model selectie. Haal outliers eruit, gebruik robuustere techniek, methodes
in SPSS.

Multicollineariteit  probleem want beperkt grootte R 2, moeilijk om belang van predictor te bepalen,
maakt regressievergelijking instabiel. In sociale wetenschappen meestal geen probleem want
variabelen hebben lage inter-correlatie.
Identificeren met 1) tolerance of predictor j: T j=1−R2j . Hier is Rj2 de coëfficiënt van
determinatie voor voorspellen predictor J met andere predictoren, probleem wanneer onder .10 2)
1 1
variantie inflatie factor (VIF) van predict j: VIF j = =
T j 1−R2j , probleem wanneer boven 10.

R2adj is wanneer we regressiemodel vanuit populatie hadden gevormd. Meest gebruikt is Wherry’s
2 N −1 2
adjusted R2 formule: Ra =1− (1−R ). Hier is N sample size en k aantal predictoren.
N−k −1




2
€4,99
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
Nononoootje Universiteit Leiden
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
27
Membre depuis
4 année
Nombre de followers
22
Documents
17
Dernière vente
1 année de cela

3,3

3 revues

5
0
4
1
3
2
2
0
1
0

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions