Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Volledige samenvatting van het boek The Students Guide To Cognitive Neuroscience. Er is niets overgeslagen, en bevat ook korte samenvattingen van de belangrijkste punten van alle artikelen in het boek

Note
-
Vendu
1
Pages
64
Publié le
09-06-2022
Écrit en
2021/2022

De samenvatting bestaat uit de volgende hoofdstukken: 2, 3, 4, 7, 8, 9, 10, 14, 15, 16 Er is niets overgeslagen, en bevat ook korte samenvattingen van de belangrijkste punten van alle artikelen in het boek Duidelijk onderscheid tussen begrippen (dikgedrukt) en uitleg

Montrer plus Lire moins
Établissement
Cours











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Publié le
9 juin 2022
Nombre de pages
64
Écrit en
2021/2022
Type
Resume

Sujets

Aperçu du contenu

Cognitive neuroscience

H2. Introducing the brain

Structure and function of the neuron; 3 components
● Cell body
● Dendrites
● Axon
● Neuron: cell that makes up nervous system + supports cognitive function

Cell body
● Contains nucleus → contains genetic code for protein synthesis

Dendrites
● Branch from cell body
● Enable communication with other neurons
● Receive info from neurons close by
● Number and structure varies with place in the brain (type of neuron)

Axon
● Each neuron has 1 axon (may be divided into branches → collaterals
● Sends info to other neurons
● Transmits an action potential

Synapse; Pre- postsynaptic
● Disc-shaped, at the terminal of an axon
● Small gap between neurons, in which neurotransmitters(chemical signals) are released
● Two neurons forming the synapse
○ Presynaptic: before synapse
○ Postsynaptic: after synapse
○ Reflects direction of info flow
● Some synapses signal electrically not chemically

Axon hillock
● Start of an axon
● Electrical current is large enough: action potential initiated

Action potential
● Presynaptic neuron is active: action potential sent through axon
● When reaches axon terminal, neurotransmitters released into synaptic cleft

Neurotransmitters
● Bind to receptors on dendrites or cell body of postsynaptic neuron
● Create a synaptic potential → conducted passively (without creating action potential) through
dendrites of postsynaptic neuron
● Passive current strong enough at beginning of axon in postsynaptic neuron → action potential
triggered in this neuron

Passive/active conduction
● Passive conduction → short range. Electrical signal impeded by resistance of surrounding
matter
● Active conduction → long range, between neurons by action potentials

Cell membrane
● Barrier for certain chemicals
● Protein molecules act as gatekeepers; allow certain chemicals in/out under certain conditions

,Chemicals going in/out membrane + balance
● Charged sodium ion: Na+
● Charged potassium ions: K+
● Balance between these in/outside membrane: normally at resting potential of -70mV across
membrane (inside negative relative to outside)

Important for generation of an action potential
● Voltage gated ion channels: only found in axons, so only axon can produce an action potential

Sequence of events in generating action potential
1. Strong enough passive current across axon membrane: opens sodium (Na+) channels
2. Sodium enters cell, cell depolarizes → becomes less negative on inside
○ At -50mV: membrane becomes penetrable → charge on inside momentarily reverses →
sudden depolarization + following repolarization in membrane = action potential
3. Negative potential of cell restored via potassium flowing out and sodium not flowing back in
4. Brief period of hyperpolarization → inside more negative than when at rest: more difficult for axon
to depolarize + prevents AP from travelling backwards

How AP moves progressively down the axon
● AP in one part of axon opens adjacent Na+ channels, so it can move from cell body to axon
terminal
● Goes faster if axon is myelinated

Myelin
● Fat substance around axon of some cells (mostly those that carry motor signals)
● Blocks normal Na+/K+ transfer, so AP jumps via passive conduction down axon where there’s no
myelin (nodes of Ranvier)
● Destruction of myelin: MS

Protein receptors in membrane of postsynaptic neurons
● They bind to neurotransmitters
● Many set up a localised flow of Na+, K+ or chloride → creates the synaptic potential

Neurotransmitters inhibitory & excitatory effects on postsynaptic neuron
● Inhibitory effects → makes it less likely to fire
○ Achieved by making inside of neuron more negative than normal → harder to depolarize
● Excitatory effects → makes it more likely to fire
○ Synaptic potentials are then passively conducted

How neurons code info
● Size AP doesn’t vary, the number of AP’s per second does
● This ‘spiking rate’ (rate of responding) depends on info the neuron is carrying
○ Some may have high spiking rate in some situations: during speech, but not others (during
vision)
● Neurons responding to similar type of info often grouped together → specialization of brain
regions

Type of info a neuron carries
● Depends on input/output it receives/sends to other neurons
● Input/output determines function of a region

Gray + white matter
● Gray matter: neural cell bodies
● White matter: axons and support cells (glia)
● Folded sheet of grey matter: cerebral cortex
● Center of brain, grey matter subcortex: basal ganglia, limbic system, diencephalon

Association tracts + Commissures + Projection tracts
● Association tracts: white matter tracts project between different cortical regions in same
hemisphere

,● Commissures: white matter tracts project between different cortical regions in different
hemispheres
○ Most important commissure: corpus callosum
● projection tracts: white matter tracts project between cortical and subcortical structures

Ventricles
● Hollow chambers filled with cerebrospinal fluid CSF
○ Non-cognitive functions: carries waste metabolites, transfers messenger signals, provides
protective cushion for brain

Brain evolution
● Adding additional structures onto older ones

4 ventricles
● 2 lateral ventricles: in each hemisphere
● One around subcortical structures
● One in brainstem (hindbrain)

Directions for navigating the brain
● Anterior (rostral) → towards the front
● Posterior (caudal) → towards the back
● Superior (dorsal) → towards the top
● Inferior (ventral) → towards the bottom
● Lateral (medial) → outer part
● Medial → in/toward the middle

Central nervous system




Coronal cross-section
● Slice in vertical plane through both hemispheres
● Brain appears round

Sagittal section
● Slice in vertical plane through one of hemispheres
● When sagittal section is between hemispheres: called midline or medial section

Axial section
● In horizontal plane

Cerebral cortex
● Two folded sheets of grey matter; L/R hemisphere

, ● High surface area to volume ratio; efficient packaging
● 3mm thick + has different layers; reflect grouping of different cell types
● 6 main cortical layers: neocortex (new cortex)

Lateral surface cortex - 4 lobes per hemisphere
● Frontal, parietal, temporal, occipital lobes

Insula
● Island of cortex beneath temporal lobe

3 different ways to divide regions of cerebral cortex
● Regions divided by pattern of gyri and sulci
○ Same pattern in everyone
● Regions divided by cytoarchitecture
○ Broadman’s areas: 52 areas (BA1-BA52), based in distribution of cell types across cortical
layers
● Regions divided by function
○ Only for primary sensory and motor areas
○ Higher cortical regions harder to ascribe unique functions to

Subcortex
● Collection of grey matter beneath cortical surface
● Divided in different systems

Basal ganglia
● Large round mass in each hemisphere
● Regulates motor activity, programming / termination of action
● Learning of rewards, skills, habits
● Disorders hypokinetic (poverty of movement) or hyperkinetic (excess of movement) -
Parkinson - Huntingtons

Basal ganglia main structures
● Caudate nucleus (tail-like structure)
● Putamen (lie more laterally)
● Globus pallidus (lie more medially)

Limbic system
● Region of subcortex involved in relating organism to its present and past environment
● Involved in detection/expression of emotional responses
● Include; amygdala, hippocampus, cingulate cortex, mammillary bodies

Amygdala
● Detection of fearful or threatening stimuli

Cingulate gyrus
● Detection of emotional and cognitive conflicts

Hippocampus
● For learning and memory

Mammillary bodies
● 2 small round projections(uitsteeksels) implicated in memory

Olfactory bulbs
● Under frontal lobes
● By connections to limbic system → importance of smell for stimuli and
● Influence on mood and memory

Diencephalon, 2 main structures
● Thalamus + hypothalamus
€8,49
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
GeSt

Faites connaissance avec le vendeur

Seller avatar
GeSt Open Universiteit
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
2
Membre depuis
3 année
Nombre de followers
1
Documents
3
Dernière vente
3 semaines de cela

0,0

0 revues

5
0
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions