Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Notes de cours

Intro to Research in Marketing lectures + notes

Note
-
Vendu
-
Pages
95
Publié le
31-05-2022
Écrit en
2021/2022

Lectures of IRM with a lot of notes!

Établissement
Cours













Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Publié le
31 mai 2022
Nombre de pages
95
Écrit en
2021/2022
Type
Notes de cours
Professeur(s)
Els gijsbrechts
Contient
Toutes les classes

Sujets

Aperçu du contenu

Intro to Research in Marketing Spring 2022


Index

Introduction Lecture ................................................................................................. 2

ANOVA Lecture ....................................................................................................... 12

Linear Regression Lecture .................................................................................... 23

Factor Analysis Lecture ......................................................................................... 39

Cluster Analysis Lecture........................................................................................ 55

Logistic Regression Lecture ................................................................................. 67

Conjoint Analysis Lecture ..................................................................................... 77

IRM Wrap-Up Lecture ............................................................................................. 89

,Introduction Lecture
HBBA: Chapter 1
1.1 Defining multivariate analysis
HBBA: ‘Broadly speaking, it refers to all statistical methods that simultaneously analyze
multiple measurements on each individual or object under investigation’

Why bother?
→ Almost every real-life marketing problem requires statistical analysis of several variables:
you need them in your toolkit!
→ Crucial for Master Thesis:
• ‘Translate’ marketing problem
• Collect data
• Analyze using R

1.2. Some basic concepts
• Measurement scales
• Errors: reliability and validity
• Statistical significance and power

Measurement scales
Nonmetric scales: Nominal & Ordinal
Metric scales: Interval & Ratio

Nominal scale:
• Characteristics: unique
definition/identification, classification
• Phenomena: e.g., brand name, gender,
student ANR
• Appropriate methods of
analysis/statistics: e.g.: %, mode, chi-
square tests

Ordinal scale:
• Characteristics: indicate ‘order’,
sequence
• Phenomena: e.g., preference ranking,
level of education
• Appropriate methods of
analysis/statistics: percentiles, median,
rank correlation + all previous statistics

,Interval scale:
• Characteristics: arbitrary origin
• Phenomena: e.g., attribute scores, price
index
• Appropriate methods of analysis:
arithmetic average, range, standard
deviation, product-moment correlation, +
previous methods

Ratio scale:
• Characteristics: unique origin
• Phenomena: e.g., age, cost, number of
customers
• Appropriate methods of analysis: geometric
average, coefficient of variation, + all previous
methods


1.2.2. Errors: Reliability and Validity
Reliability = Is the measure ‘consistent’ correctly registered?
Validity = Does the measure capture the concept it is supposed the measure? (example =
income)

1.2.3 Statistical significance and power




Hypothesis testing
Suppose that the truth is: “No difference”:
what would error-free population measure, lead to? =

,Hypothesis testing
Suppose that the truth is: “No difference”:
what would sample measures, with error, lead to? =




Type I error (α) = probability of test showing statistical significance when it is not present
(‘false positive’)

Type II error (1-β) = probability of test showing statistical significance when it is present

Power
Power depends on:
• α (+)
• Effect size (+)
• Sample size (+)
Implications:
• Anticipate consequences of α, effect
and n
• Assess/incorporate power when interpreting results


1.3. Types of Multivariate methods
Dependence or Interdependence techniques
→ Dependence techniques
• One or more variables can be identified as dependent variables and the remaining as
independent variables
• Choice of dependence technique depends on the number of dependent variables
involved in analysis

→ Interdependence techniques
• Whole set of interdependent relationships is examined
• Further classified as having focus on variables or objects

,
, HBBA Chapter 2: Preliminary data analysis and data preparation (SELF STUDY)

2.1. Conduct preliminary analysis:
Why?
• Get a feel for the data
• Suggest possible problems (and remedies) in next steps
How?
• Univariate profiling
• Bivariate analysis

2.2. Detect outliers
What are outliers? → “Observations with a unique combination of characteristics identifiable
as distinctly different from other observations” (HBBA)

There are two basic types of outliers:
• ‘good’ = true value (probably)
• ‘bad’ = something is wrong?
→ To distinguish these types, one should investigate the causes:
− Procedural error
− Exceptional circumstances (cause known or unknown)
− ‘Regular’ levels, yet unique in combination with other variables (bivariate and
multivariate outliers)

Why worry? → Bad outliers completely mess up the results

How can we detect outliers?
• Univariate (Histograms, TS plots, Frequency Tables, Mean +/- 3SD, Box Plots)
• Bivariate (Scatterplot, Multiple Histograms)
• Multivariate (Mahalanobis D2)

Keep or delete? → “Judgement Call”
• Only observations that truly deviate can be considered outliers
• Removing many ‘outliers’ can jeopardize representativeness

2.3. Examining missing data
Missing data lead to:
• Reduced sample size
• Possibly biased outcomes if missing data process not random → 4-step approach: for
identification and remedying

Steps in missing data analysis:
1. Determine type of missing data: Ignorable / Non-ignorable missings?
2. Determine extent (%) of missing data: By variable, case, overall
3. Diagnose randomness of missing data: Systematic, Missing at Random (MAR),
Missing Completely At Random (MCAR)?
4. Deal with the missing data problem: Remove cases or variables with missing values,
use imputation

→ Step 3: Diagnose randomness of missing data
Are non-ignorable missings:
• Systematic = linked to level variable itself, another pattern?
• Missing at Random (MAR) = whether Y is missing depends on level of X. Yet, within
level of X: missing at random
€5,97
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
pienhuberts

Faites connaissance avec le vendeur

Seller avatar
pienhuberts Hogeschool Arnhem en Nijmegen
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
1
Membre depuis
7 année
Nombre de followers
0
Documents
6
Dernière vente
5 année de cela

0,0

0 revues

5
0
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions