Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Summary Digital Methods theory

Vendu
5
Pages
158
Publié le
18-05-2022
Écrit en
2021/2022

Samenvatting van alle theoretische lessen (de practica staat in een ander document)












Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Infos sur le Document

Publié le
18 mai 2022
Nombre de pages
158
Écrit en
2021/2022
Type
Resume

Aperçu du contenu

DIGITAL METHODS (THEORY)




Marie De Rick & Britt Moens
(ook credits aan Victor Desmet)
2021-2022

,INHOUDSOPGAVE

1. digital methods: close reading, distant reading and common characteristics of big data 8


situating the course ............................................................................................................................................. 8


close reading (quali) ............................................................................................................................................ 9


distant reading (quanti) .................................................................................................................................... 10


readymade versus custommade data ............................................................................................................... 11


10 characteristics of big data sources ............................................................................................................... 11

big data ......................................................................................................................................................... 11

1. BIg.............................................................................................................................................................. 12

2. always-on .................................................................................................................................................. 13

3. nonreactive ............................................................................................................................................... 13

4. incomplete ................................................................................................................................................ 13

5. Inaccessible ............................................................................................................................................... 14

6. Nonrepresentative .................................................................................................................................... 14

7. Drifting ...................................................................................................................................................... 15

8. Algorithmically confounded ...................................................................................................................... 15

9. Dirty ........................................................................................................................................................... 16

10. sensitive .................................................................................................................................................. 16


Takeaways......................................................................................................................................................... 16


2. computational social science and open science 17


Computational communication science ............................................................................................................ 17


1. Opportunities of computational science for communication science ............................................................ 17

From self-report to real data ........................................................................................................................ 17

From self-report to real behavior. ................................................................................................................ 18

From lab experiments to studies of the actual social environment .............................................................. 21

From small-N to large-N ................................................................................................................................ 22



1

, From solitary to collaboratively .................................................................................................................... 24


2. challenges of computational science for communication science ................................................................. 25

Accessibility of data....................................................................................................................................... 25

Quality of big data (cf. lecture 1) .................................................................................................................. 26

Validity and reliability ................................................................................................................................... 26

Responsible and ethical conduct................................................................................................................... 28

Lacking skills and infrastructure .................................................................................................................... 29


3. Open science.................................................................................................................................................. 30

Computational social science, open science! ................................................................................................ 30

Why open science? ....................................................................................................................................... 30


conclusion.......................................................................................................................................................... 34


recap last week: open science ........................................................................................................................... 34

causes of the replication crisis ...................................................................................................................... 34


4. roadmap ........................................................................................................................................................ 35

Roadmap towards replicable computational social science ......................................................................... 35

Sharing your research design and hypotheses: preregistration ................................................................... 36

Sharing the data: open access to datasets .................................................................................................... 36


Make data reusable – reusable code! ............................................................................................................... 37


3. data visualization 38


Data visualization: Why?................................................................................................................................... 38

Are vaccinated persons more likely to be hospitalized for covid? ................................................................ 38


data science and data visualisation .................................................................................................................. 39


visual displays.................................................................................................................................................... 41

type of displays ............................................................................................................................................. 41


Cognitive Processing of data visualizations....................................................................................................... 42

cognitive processing ...................................................................................................................................... 42



2

, What happens when we see a visualization?................................................................................................ 43

attention ....................................................................................................................................................... 43

display schema .............................................................................................................................................. 44

domain knowledge ........................................................................................................................................ 44


Advantages of data visualization for cognitive tasks ........................................................................................ 45

why use visual displays? ................................................................................................................................ 45


cognitive science and principles of effective graphs ......................................................................................... 48

1. Do not trust your intuitions… .................................................................................................................... 48

2. Test the effectiveness of your display ....................................................................................................... 48

3. Task specificity .......................................................................................................................................... 49


Common uses of Graphs and visuals in computational science ........................................................................ 50

displays to illustrate data… ........................................................................................................................... 50

…But also displays to build algorithms .......................................................................................................... 50


4. Collecting data from the web – data scraping 51


intro ................................................................................................................................................................... 51


DATASCRAPING – WHAT IS THAT? .................................................................................................................... 52


COMMUNICATION SCIENCES EXAMPLES .......................................................................................................... 53

Example 1 ...................................................................................................................................................... 53

Example 2 ...................................................................................................................................................... 54

Example 3 ...................................................................................................................................................... 54


OFTENTIMES: ‘TEXT’ DATA GENERATED BY USERS ONLY.................................................................................. 55


COMMON APPLICATIONS .................................................................................................................................. 55


GENERAL PRINCIPLE .......................................................................................................................................... 57


DATASCRAPING….WHAT ARE THESE DATA THAT WE TALK ABOUT? BUILDING BLOCKS DATA, CODE &

FORMATS .......................................................................................................................................................... 58

Data, coding and data formats ...................................................................................................................... 58



3

Reviews from verified buyers

Affichage de tous les avis
3 année de cela

5,0

1 revues

5
1
4
0
3
0
2
0
1
0
Avis fiables sur Stuvia

Tous les avis sont réalisés par de vrais utilisateurs de Stuvia après des achats vérifiés.

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
mariederick1 Universiteit Gent
Voir profil
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
71
Membre depuis
5 année
Nombre de followers
46
Documents
0
Dernière vente
4 mois de cela

4,7

7 revues

5
5
4
2
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions