Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Summary functional genomics (NWI-BB064B)

Note
-
Vendu
-
Pages
40
Publié le
12-05-2022
Écrit en
2021/2022

Samenvatting van de stof voor het vak functional genomics.

Établissement
Cours











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Publié le
12 mai 2022
Nombre de pages
40
Écrit en
2021/2022
Type
Resume

Sujets

Aperçu du contenu

Summary functional genomics




1

,Chapter 1 intro functional
genomics




2

,Chapter 2 Sequencing
The key of this chapter is to understand the principle of Sanger sequencing. Moreover, amplification-
based next generation sequencing (NGS) methods as well as non-amplification based ones are
assumed as familiar.

The need for NGS read complexity



One thing to point out though is that most fragments generated by NGS methods are aligned to the
reference genome to decipher the individual’s genetic code. In order to do this accurately, one must
have:
 Sufficient coverage  statistical strength and being sure of having sequenced each and every
position of the genome
 Sufficiently large reads
 Sufficiently complex reads  repetitive sequences e.g. are not complex enough, such that
they occur too frequently in the genome to be 100% sure of their position

This can be explained according to the following calculation:
 The complexity of reads ~ #positions x #optional bases at each position  the more complex
the possible reads, the less frequent a read will occur on more than one place in the
(reference) genome
 if you have a read length of 4 bases which can be ATGC, than there are 256 possible reads 
therefore, two of the same such 4 base reads will on average occur each 256 nucleotides of
the genome (which is in a 3 million bp genome still very often!)

Different applications of NGS methods
Sequencing is core to many types of genomic analysis techniques. The most important of these
techniques and their general application are described in the box below:




WGS and targeted genome sequencing
WGS and targeted genome sequencing are used to detect mutations, although because of practical
reasons the latter is more frequently used in a diagnostic setting.




3

, RNA sequencing (RNA-seq)
The tissue-specific gene expression profile can be constructed by RNA sequencing. As might be
known, RNA is only transcribed in the case a gene is expressed. Therefore, by isolating the all RNA
from a specific tissue sample, one can reverse transcribed it into cDNA, that is on its turn amplified
by DNA pol.
 mRNA is spliced so RNAseq only covers the exons when aligned to the
reference genome
 Two types of primers:
 3’ polyA complementary poly-T primers  always present on
mRNAs but gives a bias for the 3’end as this end will in this
way yield many more reads
compared to the 5’end
 Random hexamers: primers that
hybridise to random places in
the RNA  no bias, but not all
hexamers are effective


Chromatin-immunoprecipitation sequencing (ChIP-seq)
ChIP-seq is a technique that is used to precisely locate the binding sites of specific proteins to the
chromatin. To do so, the technique
 crosslinks all proteins to the DNA and fragments it
 upon which only the crosslinks with the protein of interest is precipitated
out of the sample by the use of that protein of interest-specific
antibodies
 crosslinks are then reversed and the associated DNA fragments are
sequenced after they have been ligated to known adapter sequences for
primer hybridisation




DNaseI/ATAC sequencing
DNaseI and ATAC sequencing are two techniques used to distinguish (relatively) accessible regions of
the genome from inaccessible ones, and thus to probe the chromatin packing density 
heterochromatin from euchromatin distinguished.
 ATAC sequencing: Tn5 transposase randomly inserts known transposon sequence with
adaptors for primer hybridisation  sequenced regions aligned to reference genome were
accessible to transposase and therefore are euchromatic
 DNaseI sequencing relies on the same accessibility premise as ATAC sequencing, only the
resultant sample differs in that accessible genomic regions have been digested in contrast to

4
€6,49
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
lisaverhoeven80 Radboud Universiteit Nijmegen
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
26
Membre depuis
3 année
Nombre de followers
13
Documents
32
Dernière vente
1 mois de cela

3,0

2 revues

5
0
4
0
3
2
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions