Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Notes de cours

College aantekeningen Data-Analyse voor EBE (30K215-B-6) after midterm

Note
-
Vendu
8
Pages
56
Publié le
09-05-2022
Écrit en
2020/2021

in dit document staan alle slides van de hoorcolleges + uitleg van de docent (erg gedetailleerd) + alle r-codes met uitleg (hoe je eraan komt en wat het betekent) + de output in R-studio.

Établissement
Cours











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Publié le
9 mai 2022
Nombre de pages
56
Écrit en
2020/2021
Type
Notes de cours
Professeur(s)
Pavel cizek
Contient
Toutes les classes

Sujets

Aperçu du contenu

CHAPTER 22: Multiple linear Regression, Model violations

Motivation:

•The market-model example:
(Y = ‘daily stock price of Heineken’ on X= ‘daily price of AEX’)
-model requirements were checked graphically
-transformation of Y and X into daily returns (%) was suggested
-visual observations can be misleading
–proper tests are needed

•Amazon ebook sales: no checks have been done!
(Y = `dollar sales from published ebooks’ on X= `ebookprice’)

•Baseball teams’ performance: no checks have been done!
(Y= `runs per season’ on X= `on-base and slugging percentages’)

•Wage differences: no significant differences detected (H0). Is it due to H0 being valid, small sample
size, or invalid assumptions?

22.1 Collinearity (=if the correlation between 1 explanatory variable and linear combination of some
other explanatory variables is very strong, it can lead to collinearity)

-does not influence SSE and hence the usefulness of the model
-but interpretation of the regression coefficient becomes harder
-the values of t-tests are biased towards zero
-proving the individual significances may be hard

What can be done? (against collinearity)
-only take action if necessary (collinearity isn’t always the case, there is a possibility of it)
-possible action: remove a perpetrating variable from the model or transform them into linearly
independent components
-if caused by squared or interaction terms, the problem can occasionally be solved by switching to
centered variables (if it is possible), that is, using

22.3: Non-linearity

Is the linearity in the basic assumption E ( Y )=β 0 + β 1 X appropriate?
Consequences? Model and estimates are incorrect IF LINEARITY IS VIOLATED!
What can be done? Find a correct model specification (for example logarithms, or dummies, etc)

 This can often be detected by studying the residuals

The existence of non-linearity can be tested as follows:
-estimate the original model E ( Y )=β 0 + β 1 X 1+ ..+ β k X k
-create the variable of the accompanying predictions ŷ
-extend the original model by including the square of the prediction (for example, with coefficient γ =
gamma!):

, First estimate
the normal model, after that
extend the model with PREDICT2
with using the cbind function
 conclusion: model should be
extended to a non-linear one!



22.2: Heteroskedasticity (if homoskedasticity is violated!)




Or of its second-order counterpart with interactions. The usefulness of this model, H 0 : E ( ε 2 ) =γ 0
indicates the presence of heteroskedasticity (if the x_K’s are not equal to 0, there is
homoskedasticity)

What can be done?

,- Heteroskedasticity-consistent standard errors can be used to obtain confidence intervals/tests
for parameter values
- Weighted least squares (not addressed here!)
not discussed in
lecture, because
there is
homoskedasticity
here!




Aux model is
explained by a linear
of quadratic function!
 it is gamma0 +
gamma1X1
 or gamma1X1 +
gamma 2 X1^2




Third step: regress aux model on price e-book (first option above). Alternative: regress aux model on
price e-book and square of e-book price! (=second option above!). We have to look to F-statistic and
its p-value to check whether the auxiliary model is useful

, Possible solutions as H 0 :γ =0 is rejected (because p-value < any reasonable alpha!):

- Heteroskedasticity consistent standard errors
- Weighted least squares estimation, that is, standardizing data so that errors become
homoscedastic

This is still the amazon example, and now we know there is heteroskedasticity!




standard output =
valid under homo- AND
heteroskedasticity! BUT,
standard error, t-value and
p-value are only valid
under homoscedasticity (if
obtained with lm-
command!)

 = alternative procedure
how to obtain the errors
that are also valid under heteroskedasticity! (ESTIMATED ARE FOR BOTH EQUAL!)

22.3 Non-normality (= not crucial for outcome!)

Consequences:

-the LS estimators are generally not normally distributed
-the LS estimators are not optimal anymore
-the statistical conclusions thus cannot be trusted
-however, these problems are less serious for large sample sizes (CLT implies that the LS-estimators
are approximately normal) with the main exception being prediction intervals

 Non-normality can be detected with the Kolgomorov-Smirnov, Shapiro-Wilk, or Lilliefors test and
other test procedures (see chapter 24)

What can be done?

- A perfect remedy does not exist
€7,99
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
Economiestudentje Tilburg University
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
73
Membre depuis
3 année
Nombre de followers
46
Documents
0
Dernière vente
7 mois de cela

3,8

10 revues

5
3
4
3
3
3
2
1
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions