Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4,6 TrustPilot
logo-home
Resume

Complete samenvatting lessen Fysica

Note
-
Vendu
10
Pages
72
Publié le
20-03-2022
Écrit en
2021/2022

In dit document staat alles dat gekend dient te worden voor het examen biomechanica met inbegrip van fysica - partim fysica.












Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Infos sur le Document

Publié le
20 mars 2022
Nombre de pages
72
Écrit en
2021/2022
Type
Resume

Aperçu du contenu

LINEAIRE KINEMATICA


Plaatsbepaling
→ via orthogonaal rechtshandig assenstelsel

→ via plaatsvector r

verplaatsingsvector AB
!! Vectoren zijn grootheden met grootte, richting, zin en aangrijpingspunt
→ het begrip baan duidt op de verzameling punten die een lichaam doorloopt tijdens de beweging
!! VERPLAATSING en BAAN vallen niet noodzakelijk samen


Vectoren
1. Componenten van een vector
→ de loodrechte projecties van de vector op de assen van een coördinatenstelsel
 componenten zijn georiënteerde lijnstukken (met tekens dus)
A. Tweedimensionaal geval
→ →
→ de eenheidsvector is een vector langs een coördinatenas met grootte 1 zijn i en j





→ de componenten van de vector a langs de x – as en y – as zijn ax en ay
𝑎𝑥 = 𝑎 cos ∅
𝑎𝑦 = 𝑎 sin ∅
𝑎2 = 𝑎𝑥2 + 𝑎𝑦2
𝑎𝑦
tan ∅ =
𝑎𝑥
→ → →
𝑎 = 𝑎𝑥 𝑖 + 𝑎𝑦 𝑗
B. Driedimensionaal geval
→ → → →
→ de eenheidsvectoren in de richting van a zijn ua , i , j en k

→ de componenten van de vector a langs de x – as, y – as en z – as zijn ax, ay en az



→ → → →
a = axi+ay j+azk
a2 = ax2 + ay2 + az2




1

,2. Som en verschil van vectoren
→ via componenten van de verschillende vectoren
→ → →
𝑐 =𝑎+𝑏
𝑐𝑥 = 𝑎𝑥 + 𝑏𝑥
𝑐𝑦 = 𝑎𝑦 + 𝑏𝑦
𝑐 = √𝑐𝑥2 + 𝑐𝑦2
𝑐𝑦
Tan ∅ = 𝑐
𝑥

3. Product van vectoren
A. Product scalair en vector
→ →
→ het product van een getal k (scalair) met een vector a is ka

bv: a k=3 k = -3


B. Scalair product van vectoren
→ →
→ bij definitie is het scalair product van vectoren a en b gelijk aan
→ →
𝑎 ∙ 𝑏 = 𝑎𝑏𝑐𝑜𝑠∅
!! Het puntje tussen beide vectoren moet altijd getekend worden!
→ resultaat is dus altijd scalaire grootheid
→ →
→ geometrische interpretatie: het product van vector a op vector b
vermenigvuldigd met de grootte van

vector b
→ → → →
!! Indien de vectoren a en b evenwijdig zijn 𝑎 ∙ 𝑏 = 𝑎𝑏
→ →
!! Indien a loodrecht op b staat 𝑎 ∙ 𝑏 = 0 (ℎ𝑜𝑒𝑘 ∅ = 90°)
→ →
→ analytische uitwerking: 𝑎 ∙ →
𝑏 = 𝑎𝑥 𝑏𝑥 + 𝑎𝑦 𝑏𝑦 + 𝑎𝑧 𝑏𝑧
→ → →
→ eigenschappen: 𝑎 ∙ 𝑏 = 𝑏 ∙ 𝑎
→ → → → → →
𝑘(𝑎 ∙ 𝑏) = (𝑘𝑎) ∙ 𝑏 = 𝑎 ∙ (𝑘𝑏)
→ → → → → → →
(𝑎 + 𝑏) ∙ 𝑐 = 𝑎 ∙ 𝑐 + 𝑏 ∙ 𝑐
C. Vectorproduct van vectoren

→ bij definitie is het vectorproduct van de vectoren a en b gelijk aan
→ → →
𝑎 ⨂𝑏 = 𝑐
→ →
→ het resultaat is dus een nieuwe vector c waarvan de grootte, de
richting en de zin bij definitie als volgt gedefinieerd worden:

I. GROOTTE: 𝑐 = 𝑎𝑏𝑠𝑖𝑛∅ met ∅ de kleinste hoek om van a

naar b te draaien
→ → →
II. RICHTING: c staat loodrecht op het vlak bepaald door a en b
III. ZIN: wordt gegeven door de regel van de kurkentrekker toe te
→ →
passen bij de draaiing over de kleinste hoek van a naar b
!! Het puntje tussen beide vectoren moet altijd getekend worden!
→ → →
!! Indien de vectoren a en b evenwijdig zijn 𝑎→∙ 𝑏 = 0
→ →
!! Indien a loodrecht op b staat 𝑎 ∙ 𝑏 = 𝑎𝑏

2

,Snelheid
De snelheid wordt gedefinieerd als het tempo waarmee de plaats van het deeltje verandert id tijd.
De gemiddelde snelheid over een tijdsinterval (t1 , t2) wordt gegeven door de verhouding van de

→ ∆𝑟
verplaatsing van het deeltje en de tijd die nodig is voor deze verplaatsing: < 𝑣 > = ∆𝑡
→ valt B in A (gesloten traject) dan is < 𝑣 > = 0
De ogenblikkelijke snelheid bekomen we als we het tijdsinterval verkleinen (∆𝑡 → 0)
→ →
∆𝑟
→ algemeen: 𝑣 = lim →
∆𝑡→`0 ∆𝑡
→ de snelheid is dus de afgeleide van de plaatsvector naar de tijd
→ →
∆𝑟
Snelheid is dus een vector met GROOTTE 𝑣 = lim → en RICHTING rakend aan de baan
∆𝑡→`0 ∆𝑡
→ beweging ééndimensionaal




→ beweging in een vlak




Versnelling
De versnelling is het tempo waarmee de snelheid van het deeltje/lichaam verandert id tijd.




→ → →
De gemiddelde versnelling ober het tijdsinterval (t1 , t2) wordt < → 2 1 𝑣 −𝑣 ∆𝑣
𝑎 >=→ → =
𝑡 −𝑡 2 1 ∆𝑡
→ → →
→ a = 0 als v1 = v2 in grootte en richting
De ogenblikkelijke versnelling bekomen we als we het tijdsinterval verkleinen (∆𝑡 → 0)

→ ∆𝑟
→ algemeen: 𝑎 = lim →
∆𝑡→`0 ∆𝑡
→ de versnelling is dus de afgeleide van de snelheidsvector naar de tijd!

→ ∆𝑣
Versnelling is dus een vector met GROOTTE 𝑎 = lim en
∆𝑡→`0 ∆𝑡
RICHTING rakend aan de hodograaf
!! Door vanuit een oorsprong O de snelheden op verschillende tijdstippen uit te zetten
bekomt men een hodograaf: de fictieve baan van het snelheidspunt.


3

, De ééndimensionale beweging
1. Plaats – snelheid – versnelling – grafische interpretatie
I. De plaats of de positie van het deeltje is éénduidig bepaald
door de x – coördinaat van het deeltje
→ ∆𝑥 = 𝑥2 − 𝑥1
→ de verplaatsing is een vectoriële grootheid en heeft dus
een GROOTTE, RICHTING en ZIN
II. De snelheid waarmee een deeltje zich verplaatst, wordt bepaald a.d.h.v de kennis
van de plaats in functie van de tijd
→ de gemiddelde snelheid wordt gedefinieerd als de verhouding van de verplaatsing
∆𝑥
tot het tijdsinterval nodig voor die verplaatsing: < 𝑣 >= ∆𝑡
2. De éénparige rechtlijnige beweging (ERB)
→ een rechtlijnige beweging waarvan de snelheid constant is
→ →
als v = cte ⇔ a = 0
→ kan beschreven worden in 1D met de x-as gekozen in de RICHTING van de beweging

De helling in de (x,t) grafiek is v

 x=x0 +vt




3. De éénparig versnelde rechtlijnige beweging (EVRB)
→ rechtlijnige beweging waarvan de versnelling constant is
→ kan beschreven worden in 1D met de x-as gekozen in de RICHTING van de beweging


Beschouw: x0 positie van het deeltje op t = 0
v0 snelheid van het deeltje op t = 0
a is constant
𝑡 𝑡 𝑑𝑣 𝑡
𝑣 − 𝑣0 = ∫𝑡=𝑂 𝑑𝑣 = ∫𝑡=0 𝑑𝑡 𝑑𝑡 = ∫𝑡=0 𝑎𝑑𝑡 = 𝑎𝑡
⇒ 𝑣 = 𝑣0 + 𝑎𝑡 (1) Helling in (v,t)grafiek: a

𝑑𝑥
Beweging gebeurt langs de x-as; 𝑣 = 𝑑𝑡
𝑡 𝑡 𝑡
𝑥− 𝑥0 = ∫𝑡=𝑂 𝑑𝑥 = ∫𝑡=0 𝑣 𝑑𝑡 = ∫𝑡=0(𝑣0 + 𝑎𝑡)𝑑𝑡
1
= 𝑣0 𝑡 + 2 𝑎𝑡 2
1
⇒𝑥 = 𝑥0 + 𝑣0 𝑡 + 2 𝑎𝑡 2 (2)


Eliminatie van t uit (1) en (2) Richtingscoëfficiënt van de raaklijn
⇒ 𝑣 2 = 𝑣02 + 2𝑎(𝑥 − 𝑥0 ) (3) gegeven door tan 𝛼 =
𝑑𝑥
=𝑣
𝑑𝑡
4
€10,39
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
janavanhaele Universiteit Gent
Voir profil
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
19
Membre depuis
3 année
Nombre de followers
11
Documents
29
Dernière vente
2 mois de cela

4,0

1 revues

5
0
4
1
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions