Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Samenvatting Econometrie

Vendu
7
Pages
28
Publié le
28-05-2015
Écrit en
2014/2015

Samenvatting van 28 pagina's voor het vak Applied Econometrics aan de UHasselt










Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Infos sur le Document

Publié le
28 mai 2015
Nombre de pages
28
Écrit en
2014/2015
Type
Resume

Aperçu du contenu

Samenvatting Econometrie

Hoofdstuk 4:
Lineaire regressie met één
regressor
Vaak weten we het effect niet op een variabele Y als we een verandering
aanbrengen in een andere variabele X.
 Bijvoorbeeld wat is het effect als we minder leerlingen in een
klas zetten op de testscore?

Daarom gaan we het lineaire regressiemodel bekijken en dit relateert
één variabele X aan een andere variabele Y.
We willen nu de helling van deze lineaire relatie gaan schatten. We willen
dus het effect op Y gaan schatten van een verandering van één eenheid in
X en we gaan daar steekproefgegevens voor gebruiken van de twee
variabelen.
Hoe gaan we voor onze schatting van de helling nu zo een lijn tekenen
doorheen de gegevens: dit gaan we doen met de kleinste
kwadratenmethode of in het Engels ordinary least squares.


Het lineaire regressie model
Voorbeeld: men wil het aantal leerlingen per leerkracht verminderen door
nieuwe leerkrachten aan te werven en dit omdat de ouders zeggen dat de
kinderen zo meer individuele aandacht krijgen. Nu is de vraag of de
resultaten van de leerlingen er echt op vooruit gaan als men de grootte
van de klassen vermindert.
De populatie regressielijn wordt hier: TestScore= β0 + β 1 × KlasGrootte
β 1 is dan de helling van de populatie regressielijn en dat is de
verandering van de testscore ten opzichte van de verandering van één
eenheid in de grootte van de klas.
β 0 en β 1 zijn de populatieparameters. De waarde van β 1 willen we
graag weten, maar die weten we niet. We moeten deze warde gaan
schatten door steekproefgegevens te gebruiken.
Algemene notatie
Het Lineaire Regressie Model: Y i=β 0 + β 1 X i+u i
 Het onderschrift i gaat zover als het aantal observaties
 Yi is de afhankelijke variabele, de regressand
 Xi is de onafhankelijke variabele, de regressor
 β 0 is de intercept
 β 1 is de helling
 ui is de storingsterm of error term

,  Deze storingsterm omvat alle factoren die verantwoordelijk zijn voor het
verschil tussen de gemiddelde uitkomst van de observatie i en de
geschatte uitkomst door de regressielijn. De storingsterm bevat alle andere
factoren buiten X die de waarde van de
afhankelijke variabele Y bepalen voor een
bepaalde specifieke observatie i.
 De populatie regressielijn: β 0+ β1 X

Grafische voorstelling van de regressielijn:
Op de grafiek zien we dat de regressielijn een
negatieve helling heeft. De zwarte bolletjes zijn de
observaties van X en Y. Zoals we zien staan deze
niet mooi op de getekende populatie regressielijn
omdat er ook andere factoren dan enkel X zijn die
de waarde van Y bepalen. De afwijking die we zien is de regressiefout u.


De coëfficiënten van het lineaire regressiemodel schatten
Meestal zijn de intercept β 0 en de helling β 1 van de populatie
regressielijn niet geweten. We moeten daarom gegevens gebruiken zodat
we de intercept en de helling kunnen schatten.
De populatiewaarde schatten we meestal door een willekeurige steekproef
te nemen.
Op deze samenvatting zien we de gegevens die we gevonden hebben. We
zien bijvoorbeeld dat het 10de percentiel van de verdeling van de student-
teacher ratio 17.3 is, dit is dat slechts 10% van de districten een student-
teacher ratio hebben die lager is dan 17.3%. Deze tabel zegt ons wel niets
over de relatie tussen de student-teacher ratio en de testscore.




In de volgende puntenwolk van de steekproef zien we dat er een lichte
negatieve correlatie is tussen de twee variabelen.
€5,49
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Reviews from verified buyers

Affichage de tous les avis
8 année de cela

5,0

1 revues

5
1
4
0
3
0
2
0
1
0
Avis fiables sur Stuvia

Tous les avis sont réalisés par de vrais utilisateurs de Stuvia après des achats vérifiés.

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
Christophe1994 Universiteit Hasselt
Voir profil
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
16
Membre depuis
11 année
Nombre de followers
10
Documents
19
Dernière vente
3 année de cela

4,8

4 revues

5
3
4
1
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions