Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4,6 TrustPilot
logo-home
Resume

Samenvatting Getaltheorie

Note
-
Vendu
-
Pages
15
Publié le
23-01-2022
Écrit en
2021/2022

Een samenvatting van het vak getaltheorie voor de tweedegraads lerarenopleiding wiskunde in het 2e jaar

Établissement
Cours









Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Publié le
23 janvier 2022
Nombre de pages
15
Écrit en
2021/2022
Type
Resume

Sujets

Aperçu du contenu

Samenvatting getaltheorie
Volledige inductie
Voor volledige inductie hebben wij het volgende stappenplan:
1. Beginconditie; toon aan dat P(0) (de laagst mogelijke waarde) waar is.
2. Inductie stap;
a. Neem aan dat P(k) waar is.
b. Toon aan dat P(k+1) waar is.
3. Conclusie; de bewering P(n) geldt voor alle n.

Voorbeeld
n ( n+1 )
Stelling: bewijs dat 1+2+3+…+ n=
2
Bewijs:
2
1. P ( 1 ) : 1= → 1=1, dit klopt. (Let op dat je P(x): schrijft en niet P(x)=)
2
k ( k +1 )
2. Neem aan dat P ( k ) : 1+ 2+ 3+…+ k= klopt.
2
Toon aan dat P ( k +1 ) klopt:
( k +1 ) ( ( k +1 ) +1 ) k ( k +1 ) ( k +1 ) ( ( k +1 ) +1 )
1+2+3+…+ k + ( k +1 )=? + ( k +1 )=?
2 2 2
k ( k +1 ) 2 ( k + 1 ) ( ( k +1 )+ 1 ) k ( k +1 ) 2 ( k +1 ) ( k + 1 ) ( ( k +1 )+ 1 )
+ ( k +1 )=? + =?
2 2 2 2 2 2
k ( k +1 )+ 2 ( k +1 )=? ( k + 1 )( k + 2 )k 2+ k +2 k +2=? k 2 +2 k +k +2k 2+3 k + 2=k 2 +3 k + 2
n ( n+1 )
3. Conclusie: 1+2+3+…+ n= klopt voor elke n.
2

, Deelbaarheid
Als er een d bestaat, die n deelt zodat er een heel getal uit komt, schrijven wij dit op
als: d∨n‘d is een deler van n’. Bijvoorbeeld: 4∨56 , want 56=4 ∙16 .

Het bewijzen van deelbaarheid doen wij zo:
Stelling: voor elke n, als 4|n, dan 2|n. (voor elke n, als 4 een deler is van n, dan is 2
ook een deler van n)
Bewijs: neem n willekeurig
Stel: 4|n
Bepaal een k, zodat n=4 ∙ k
Dan: n=2∙ 2 ∙ k
n=2∙( 2k ) 2k = l
n=2l
Dus: 2|n

Lijstje met standaardregels die je moet kennen:
€3,49
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
BartHoeks

Faites connaissance avec le vendeur

Seller avatar
BartHoeks Hogeschool Arnhem en Nijmegen
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
3
Membre depuis
3 année
Nombre de followers
1
Documents
8
Dernière vente
2 année de cela

0,0

0 revues

5
0
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions