ZSO 1: Moleculaire basis voor embryonale ontwikkeling
Hoofdstuk 3 p 35-51
• Genen dat ontwikkeling leiden
• Zelfde gen functioneert op andere tijden en in andere organen
→ minder moleculen nodig voor controleren van ontwikkeling
• Deze genen voor en na geboorte werken in normale en abnormale processen:
o Voor: reguleren van ontwikkeling, kan juist of fout gebeuren (mutaties)
o Na: mogelijkheid tot opwekken van tumoren (mutatie)
3.1 Fundamentele moleculaire processen in ontwikkeling
• Transcriptie factoren:
o Blijven in cel die hun produceert
o Proteïnen die een domein bevatten dat kan binden op DNA van
promoter of enhancer regio van specifieke genen
o Ook een domein dat interageert met RNA polymerase II en
andere transcriptie factoren
o Reguleert constant hoeveelheid mRNA geproduceerd
• Signaalmoleculen:
o Verlaten cel die hun produceert en werken in op andere cellen (dichtbij of ver weg)
o Binden als ligand op receptor (op plasmamembraan)
o Meeste zijn proteïnen van grote families genaamd Groeifactoren
• Signaaltransductie pathway/cascade:
o Als ligand bindt op receptor
o Geeft ligand signaal door naar nucleus van cel
o Signaal reguleert genexpressie en toekomstige ontwikkeling van cel
I. Transcriptie factoren
• Sommige voorkomen in alle cellen, andere is sommige en in bepaalde fases
• Vaak belangrijk voor verandering dat zorgen voor grote ontwikkelingsveranderingen
• Werken in op promoters of enhancers voor activeren of onderdrukken van genen
• Verschillende groepen:
a. Homeobox bevattende genen en homeodomein proteïnen, Transcriptiefactor
• Homeodomein:
o Sequentie van aminozuren (60 aminozuren)
o Helix-loop-helixregio
o Proteïnen
• Homeobox:
o 180 nucleotiden die encoderen voor homeodomein
o Genen
• HOX genen:
o 4 verschillende clusters op 4 verschillende chromosomen
o In 13 paraloge groepen
▪ Genen van dezelfde paraloge groepen hebben vaak
dezelfde functie
▪ Indien er één geïnactiveerd is → andere kan functie
overnemen
o Spatiotemporele expressie volgens strengen regels
▪ Geactiveerd en tot expressie gebracht in 3’-5’ richting
▪ 3’ genen worden eerder tot expressie gebracht
o Spelen een prominente rol in het craniocaudale deel van het lichaam
→ spatiotemporele expressie zorgt voor opbrengst
o Mutaties leiden tot morfologische transformaties van de segmentale
structuren
▪ Functie verlies mutatie → posterior-to-anterior transformaties
▪ Functie winst mutatie → anterior-to-posterior transformaties
, o Principiële functie = opzetten van structuren langs de lichaamsas
→ MAAR, sommige groepen later hergebruikt voor formatie specifieke niet-axiale
structuren
o Bij mensen: paralogen groepen hebben ongeveer zelfde functies, zodat als 1
“uitvalt” andere functie overnemen
→ bv. Alle HOX “1” genen hebben dezelfde (A1, B1 en D1)
→ alle paralogen vallen uit → morfologische fouten
o HOX gen modificaties:
▪ Chromatinestructuur
▪ Chromosoom organisatie
▪ miRNA (RNAi) van HOX mRNA
• PAX genen:
o Bevatten een gepaard domein van 128 aminozuren die aan DNA bindt
o Belangrijk voor zintuig organen en CZS
• Andere Homeobox bevattende genfamilies:
o POU genfamilie:
▪ Bevatten homeobox en een regio die encodeert voor 75 animozuren dat
bindt aan DNA door helix-loop-helix
o Lim proteïnen:
▪ Familie van homeodomein proteïnen
▪ Sommige binden aan DNA in nucleus andere zitten in cytoplasma
o Dix genfamilie:
▪ Belangrijk voor uitgroeiende structuren
o Msx genen
▪ Embryologische ontwikkeling
b. T-Box genen:
• Tbx → brachyury (T) locus
• 180-200 aminozuren dat bindt aan specifieke DNA sequentie
• Belangrijke rol in ontwikkeling
• Bevat eomesodermin
c. Helix-Loop-Helix transcriptiefactor
• Basische helix-loop-helix proteïnen:
o Korte set aminozuur sequentie in welke 2 α-helices zijn gescheiden
door een aminozuur loop
o Fungeren meestal als homodimeer
o 1 helix is korter en nodig om te dimeriseren, de lange helix heeft het
DNA-bindende motief
o Transcriptiefactoren die nodig zijn voor de myogenese
• Vorkhoofd (FOX) genfamilie:
o Variant van helix-loop-helix
o Gemeenschappelijk deel → vorkhoofd DNA bindende regio
(gevleugelde helix)
o Samenwerken om morfogenesis te regelen van een structuur
d. Zink vinger Transcriptiefactor
• Bevat proteïnen met regelmatige geplaatste cystidine en histidine units dat
gebonden zijn aan zinkionen → polypeptide ketting veranderen in
vingerachtige structuur
• Deze “fingers” in specifieke regio’s in DNA helix
• Sox genen:
o Gemeenschappelijke HMG (high-mobility Group) domein op proteïne
o Domein is abnormaal voor transcriptiefactor → het bind, met een
partnerproteïne, op 7 nucelotiden op de kleine, ipv grote groeve op
DNA → conformatie veranderingen in DNA
, o Werken samen met andere transcriptiefactoren om expressie te veranderen op
targetgen
o Van SRY gen
• WT1:
o Wilms tumor suppressor gen
o Belangrijk voor ontwikkeling van nieren en gonaden
II. Signaalmoleculen
• Signaalpathway = signaalmolecule (ligand) → receptor → signaaltransductie
a. Transforming growth factor-β (TGF- β)
• Disulfide linked dimeer
• Gesyntiseerd als een paar inactieve 390 aminozuur precursors
• Bevat ook N-terminal signaalsequentie, een proregio en 112 aminozuur C-terminal
bioactief domein
• Na secretie blijft alles gebonden
• Proregio van bioactief domein enzymatisch gekliefd (aan N-terminus) → 2 bioactieve
regio’s komen samen → actief dimeer
• Belangrijkste familie van TFG-β = Bone morphogenetic proteïns (BMPs):
o Belangrijk voor botreparatie en meeste structuren tijdens embryonale periode
o Dimeren
o Doen hun functie door inhiberen van andere processen maar worden
ook zelf geïnhibeerd → binden op BMPs zodat ze niet kunnen binden
met receptor
o EC gereguleerd
b. Fibroblast growth factor family (FGF)
• 23 leden, elke eigen functie
• Bloedvatgroei en vorming
• FGF-2 (bloedvatvorming) en FGF-8 de voornaamste
• Binden met heparansulfaat om receptoren te activeren
• Regulatie FGF:
o Regulatie van interactie met heparine
o Regulatie op membraan van reagerende cel door transmembranaire
proteïnen (op receptorniveau)
o Inhibitie door sprouty
c. Hedgehog familie
• Sonic hedghog (shh):
o N-terminal regio en C-terminal regio
o Na vrijlating signaalpeptide eraf gekliefd
o C terminal eraf gekliefd en Shh binden met cholesterol
o Shh met cholesterol gesecreert en blijft hangen aan membraan
o Signaal activiteit zit in N-terminal segment
o C-terminal segment speelt geen rol in signaliseren
o Receptor Patched (Ptc) inhibeert smoothened (smo) → bij binden van
shh op Ptc → inhibitie van smo stopt → smo getransporteerd naar
primaire cilium membraan
o Smo activeert 5-zink vinger transcriptiefactor, Gli
▪ Ongestimuleerde cel → GliR (repressor)
▪ Gestimuleerd door shh → GliA (activator) → genexpressie
d. Wnt Familie:
• Wingless fenotype in fruitvlieg
• Bij mens belangrijk voor gastrulatie en proliferatie, differentiatie en polariteit van weefsel
• “Plakkerig” → interageren met componenten van ECM
• Activiteit geïnhibeert:
, o Wnt-inhibitory factor-1 (WTF-1) en cerberus → binden direct
o Dickkopf → binden op receptor
• Wnt aanwezig → β-catenine niet afgebroken
• Receptor Fz= frizzled
Dsh = discheveld → zorgt voor plaats van destructie complex
e. Hippo pathway:
f. Andere acties van signaalmoleculen:
• Vaak signaalmoleculen functioneren door andere signaalmoleculen te inhiberen
→ vb. signaalmoleculen chrodin, noggin en gremlin inhiberen BMP wat zelf als inhibitor
werkt
• Sommige signaalmoleculen Positieve (shh en FGF) en negatieve (BMP) regulatoren van groei
• Normale groei heeft balans tussen beide nodig
III. Receptor moleculen
• Op celmembraan of IC gelegen
• Doorgeven van signaal van signaalmolecule naar IC
• Celopp. Receptoren = transmembranaire proteïnen met EC, transmembraan en IC domein
• EC domein = bindingsplaats voor ligand
→ binding zorgt voor conformationale verandering van IC domein
• 2 soorten:
o Receptoren met intrinsieke proteïne kinase activiteit
→ IC domein bevat tyrosine kinase of serine/threonine kinase
o Receptoren dat gebruik maken van second messengers om cytoplasmatisch
proteïnen kinase te activeren
→ receptor is gescheiden van proteïne kinase activiteit
→ serie van stappen in cytoplasma nodig voor kinase te activeren
• Notch receptor:
o Alle cellen groeien gelijk tot 1 cel gaat differentiëren tot dominante cel random of
door positie
→ cel stuurt inhibitorisch signaal naar naburige cellen zodat zij dit niet doen
o Naburige cellen differentiëren tot secundaire celtype
o Laterale inhibitie = inhibitorisch Signaal van dominant naar naburige cellen
o Notch receptor op naburige cellen die activeert wanneer bindt met Delta/jagged
ligand van dominante cel (zowel Notch als Delta op membraan gelegen)
o Wanneer Delta en notch binden → IC domein van notch eraf gekliefd
o IC domein vormt complex met Deltex
o Complex bindt met transcriptiefactor op enhancer of split gen
o Dit gen inhibeert achaete-scute complex (gen)
Hoofdstuk 3 p 35-51
• Genen dat ontwikkeling leiden
• Zelfde gen functioneert op andere tijden en in andere organen
→ minder moleculen nodig voor controleren van ontwikkeling
• Deze genen voor en na geboorte werken in normale en abnormale processen:
o Voor: reguleren van ontwikkeling, kan juist of fout gebeuren (mutaties)
o Na: mogelijkheid tot opwekken van tumoren (mutatie)
3.1 Fundamentele moleculaire processen in ontwikkeling
• Transcriptie factoren:
o Blijven in cel die hun produceert
o Proteïnen die een domein bevatten dat kan binden op DNA van
promoter of enhancer regio van specifieke genen
o Ook een domein dat interageert met RNA polymerase II en
andere transcriptie factoren
o Reguleert constant hoeveelheid mRNA geproduceerd
• Signaalmoleculen:
o Verlaten cel die hun produceert en werken in op andere cellen (dichtbij of ver weg)
o Binden als ligand op receptor (op plasmamembraan)
o Meeste zijn proteïnen van grote families genaamd Groeifactoren
• Signaaltransductie pathway/cascade:
o Als ligand bindt op receptor
o Geeft ligand signaal door naar nucleus van cel
o Signaal reguleert genexpressie en toekomstige ontwikkeling van cel
I. Transcriptie factoren
• Sommige voorkomen in alle cellen, andere is sommige en in bepaalde fases
• Vaak belangrijk voor verandering dat zorgen voor grote ontwikkelingsveranderingen
• Werken in op promoters of enhancers voor activeren of onderdrukken van genen
• Verschillende groepen:
a. Homeobox bevattende genen en homeodomein proteïnen, Transcriptiefactor
• Homeodomein:
o Sequentie van aminozuren (60 aminozuren)
o Helix-loop-helixregio
o Proteïnen
• Homeobox:
o 180 nucleotiden die encoderen voor homeodomein
o Genen
• HOX genen:
o 4 verschillende clusters op 4 verschillende chromosomen
o In 13 paraloge groepen
▪ Genen van dezelfde paraloge groepen hebben vaak
dezelfde functie
▪ Indien er één geïnactiveerd is → andere kan functie
overnemen
o Spatiotemporele expressie volgens strengen regels
▪ Geactiveerd en tot expressie gebracht in 3’-5’ richting
▪ 3’ genen worden eerder tot expressie gebracht
o Spelen een prominente rol in het craniocaudale deel van het lichaam
→ spatiotemporele expressie zorgt voor opbrengst
o Mutaties leiden tot morfologische transformaties van de segmentale
structuren
▪ Functie verlies mutatie → posterior-to-anterior transformaties
▪ Functie winst mutatie → anterior-to-posterior transformaties
, o Principiële functie = opzetten van structuren langs de lichaamsas
→ MAAR, sommige groepen later hergebruikt voor formatie specifieke niet-axiale
structuren
o Bij mensen: paralogen groepen hebben ongeveer zelfde functies, zodat als 1
“uitvalt” andere functie overnemen
→ bv. Alle HOX “1” genen hebben dezelfde (A1, B1 en D1)
→ alle paralogen vallen uit → morfologische fouten
o HOX gen modificaties:
▪ Chromatinestructuur
▪ Chromosoom organisatie
▪ miRNA (RNAi) van HOX mRNA
• PAX genen:
o Bevatten een gepaard domein van 128 aminozuren die aan DNA bindt
o Belangrijk voor zintuig organen en CZS
• Andere Homeobox bevattende genfamilies:
o POU genfamilie:
▪ Bevatten homeobox en een regio die encodeert voor 75 animozuren dat
bindt aan DNA door helix-loop-helix
o Lim proteïnen:
▪ Familie van homeodomein proteïnen
▪ Sommige binden aan DNA in nucleus andere zitten in cytoplasma
o Dix genfamilie:
▪ Belangrijk voor uitgroeiende structuren
o Msx genen
▪ Embryologische ontwikkeling
b. T-Box genen:
• Tbx → brachyury (T) locus
• 180-200 aminozuren dat bindt aan specifieke DNA sequentie
• Belangrijke rol in ontwikkeling
• Bevat eomesodermin
c. Helix-Loop-Helix transcriptiefactor
• Basische helix-loop-helix proteïnen:
o Korte set aminozuur sequentie in welke 2 α-helices zijn gescheiden
door een aminozuur loop
o Fungeren meestal als homodimeer
o 1 helix is korter en nodig om te dimeriseren, de lange helix heeft het
DNA-bindende motief
o Transcriptiefactoren die nodig zijn voor de myogenese
• Vorkhoofd (FOX) genfamilie:
o Variant van helix-loop-helix
o Gemeenschappelijk deel → vorkhoofd DNA bindende regio
(gevleugelde helix)
o Samenwerken om morfogenesis te regelen van een structuur
d. Zink vinger Transcriptiefactor
• Bevat proteïnen met regelmatige geplaatste cystidine en histidine units dat
gebonden zijn aan zinkionen → polypeptide ketting veranderen in
vingerachtige structuur
• Deze “fingers” in specifieke regio’s in DNA helix
• Sox genen:
o Gemeenschappelijke HMG (high-mobility Group) domein op proteïne
o Domein is abnormaal voor transcriptiefactor → het bind, met een
partnerproteïne, op 7 nucelotiden op de kleine, ipv grote groeve op
DNA → conformatie veranderingen in DNA
, o Werken samen met andere transcriptiefactoren om expressie te veranderen op
targetgen
o Van SRY gen
• WT1:
o Wilms tumor suppressor gen
o Belangrijk voor ontwikkeling van nieren en gonaden
II. Signaalmoleculen
• Signaalpathway = signaalmolecule (ligand) → receptor → signaaltransductie
a. Transforming growth factor-β (TGF- β)
• Disulfide linked dimeer
• Gesyntiseerd als een paar inactieve 390 aminozuur precursors
• Bevat ook N-terminal signaalsequentie, een proregio en 112 aminozuur C-terminal
bioactief domein
• Na secretie blijft alles gebonden
• Proregio van bioactief domein enzymatisch gekliefd (aan N-terminus) → 2 bioactieve
regio’s komen samen → actief dimeer
• Belangrijkste familie van TFG-β = Bone morphogenetic proteïns (BMPs):
o Belangrijk voor botreparatie en meeste structuren tijdens embryonale periode
o Dimeren
o Doen hun functie door inhiberen van andere processen maar worden
ook zelf geïnhibeerd → binden op BMPs zodat ze niet kunnen binden
met receptor
o EC gereguleerd
b. Fibroblast growth factor family (FGF)
• 23 leden, elke eigen functie
• Bloedvatgroei en vorming
• FGF-2 (bloedvatvorming) en FGF-8 de voornaamste
• Binden met heparansulfaat om receptoren te activeren
• Regulatie FGF:
o Regulatie van interactie met heparine
o Regulatie op membraan van reagerende cel door transmembranaire
proteïnen (op receptorniveau)
o Inhibitie door sprouty
c. Hedgehog familie
• Sonic hedghog (shh):
o N-terminal regio en C-terminal regio
o Na vrijlating signaalpeptide eraf gekliefd
o C terminal eraf gekliefd en Shh binden met cholesterol
o Shh met cholesterol gesecreert en blijft hangen aan membraan
o Signaal activiteit zit in N-terminal segment
o C-terminal segment speelt geen rol in signaliseren
o Receptor Patched (Ptc) inhibeert smoothened (smo) → bij binden van
shh op Ptc → inhibitie van smo stopt → smo getransporteerd naar
primaire cilium membraan
o Smo activeert 5-zink vinger transcriptiefactor, Gli
▪ Ongestimuleerde cel → GliR (repressor)
▪ Gestimuleerd door shh → GliA (activator) → genexpressie
d. Wnt Familie:
• Wingless fenotype in fruitvlieg
• Bij mens belangrijk voor gastrulatie en proliferatie, differentiatie en polariteit van weefsel
• “Plakkerig” → interageren met componenten van ECM
• Activiteit geïnhibeert:
, o Wnt-inhibitory factor-1 (WTF-1) en cerberus → binden direct
o Dickkopf → binden op receptor
• Wnt aanwezig → β-catenine niet afgebroken
• Receptor Fz= frizzled
Dsh = discheveld → zorgt voor plaats van destructie complex
e. Hippo pathway:
f. Andere acties van signaalmoleculen:
• Vaak signaalmoleculen functioneren door andere signaalmoleculen te inhiberen
→ vb. signaalmoleculen chrodin, noggin en gremlin inhiberen BMP wat zelf als inhibitor
werkt
• Sommige signaalmoleculen Positieve (shh en FGF) en negatieve (BMP) regulatoren van groei
• Normale groei heeft balans tussen beide nodig
III. Receptor moleculen
• Op celmembraan of IC gelegen
• Doorgeven van signaal van signaalmolecule naar IC
• Celopp. Receptoren = transmembranaire proteïnen met EC, transmembraan en IC domein
• EC domein = bindingsplaats voor ligand
→ binding zorgt voor conformationale verandering van IC domein
• 2 soorten:
o Receptoren met intrinsieke proteïne kinase activiteit
→ IC domein bevat tyrosine kinase of serine/threonine kinase
o Receptoren dat gebruik maken van second messengers om cytoplasmatisch
proteïnen kinase te activeren
→ receptor is gescheiden van proteïne kinase activiteit
→ serie van stappen in cytoplasma nodig voor kinase te activeren
• Notch receptor:
o Alle cellen groeien gelijk tot 1 cel gaat differentiëren tot dominante cel random of
door positie
→ cel stuurt inhibitorisch signaal naar naburige cellen zodat zij dit niet doen
o Naburige cellen differentiëren tot secundaire celtype
o Laterale inhibitie = inhibitorisch Signaal van dominant naar naburige cellen
o Notch receptor op naburige cellen die activeert wanneer bindt met Delta/jagged
ligand van dominante cel (zowel Notch als Delta op membraan gelegen)
o Wanneer Delta en notch binden → IC domein van notch eraf gekliefd
o IC domein vormt complex met Deltex
o Complex bindt met transcriptiefactor op enhancer of split gen
o Dit gen inhibeert achaete-scute complex (gen)