Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Samenvatting hs 3 transformaties van toevalsveranderlijken

Note
-
Vendu
-
Pages
3
Publié le
24-12-2021
Écrit en
2021/2022

een samenvatting van alle begrippen mbt transformaties van toevalsveranderlijken, uit hs3









Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Infos sur le Document

Livre entier ?
Non
Quels chapitres sont résumés ?
Hs 3 transformaties van toevalsveranderlijken
Publié le
24 décembre 2021
Nombre de pages
3
Écrit en
2021/2022
Type
Resume

Sujets

Aperçu du contenu

Transformaties van toevalsveranderlijken

1. Algemene formules voor verdelingen en dichtheden

algemene procedure:
Y (= de getransformeerde) is een functie van X. Je begint met de c.v.f. op te stellen van Y, en je herwerkt naar X
FY (y) = P(Y ≤ y) = P( g(X) ≤ y)

het model voor een toevalsveranderlijke Y wordt berekend vanuit het model voor X en het gekende verband Y = g(X)
De bedoeling is dan de uitdrukking P(g(X) ≤ y) om te werken tot een functie van Y

Het is belangrijk om na te gaan of de functie g een stijgende of dalende functie is.
Want als het om een dalende functie gaat inverteren, keert het teken om.

=> De Procedure formeel opschrijven geeft een algemene formule voor de dichtheid van een getransformeerde veranderlijke

Als g(x) monotoon stijgend is, dan is g(x) inverteerbaar,
−1 −1
FY (y) = P(g(X) ≤ y) = P(X ≤ g (y)) = FX(g (y))

−1 −1
Door afleiden vinden we dan fY (y) = fX(g (y)) * dg (y)/ dy .

−1
Noteer x(y) = g (y): fY (y) = fX(x(y))* dx/ dy

Als g(x) monotoon dalend is, dan keert het ongelijkheidsteken om
−1 −1
FY (y) = P(g(X) ≤ y) = P(X ≥ g (y)) = 1 − FX(g (y))

De afgeleide geeft fY (y) = −fX(x(y))* dx/ dy

Omdat dx/dy nu negatief is, kunnen we absolute waardes zetten en het minteken laten vallen

Dit geeft volgende formule voor monotone transformaties
fY (y) = fX(x(y)) |dx/dy| = fX(x(y))|x ′(y)|
€2,99
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
julienvandecasteele

Document également disponible en groupe

Thumbnail
Package deal
kansrekenen
-
1 6 2021
€ 17,94 Plus d'infos

Faites connaissance avec le vendeur

Seller avatar
julienvandecasteele Katholieke Universiteit Leuven
Voir profil
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
5
Membre depuis
4 année
Nombre de followers
4
Documents
19
Dernière vente
3 année de cela

0,0

0 revues

5
0
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions