Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Notes de cours

Extensive summary of all knowledge clips week 1 - 6 Strategy Analytics course - Tilburg University

Vendu
4
Pages
19
Publié le
25-11-2021
Écrit en
2021/2022

Summary of all knowledge clips used for lectures from week 1 - 6. Include figures, charts and examples in order to fully understand concepts discussed

Établissement
Cours









Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Livre connecté

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Publié le
25 novembre 2021
Nombre de pages
19
Écrit en
2021/2022
Type
Notes de cours
Professeur(s)
A. gosh & m. testoni
Contient
Toutes les classes

Sujets

Aperçu du contenu

Strategy Analytics
Knowledge clips

Week 1

Data Science Fundamentals

Data observations present in daily life;
1) Marketing
- Online advertising
- Recommendations for cross-selling
- Customer relationship management
2) Finance
- Credit scoring and trading
- Fraud detection
- Workforce management
3) Retail
- Marketing
- Supply chain management

Data-driven decision making (DDD) = refers to the practice of basing
decisions on the analysis of data, rather than purely on intuition. Very
useful tool that can be used to drive managerial decisions -> need to
triangulate different forms of data and managerial experience to make
decisions

Data science = involves principles, processes and techniques for
understanding phenomena via the (automated) analysis of data. To
address specific question, it is the engineering behind the logics

The sort of decisions of interest is the need for discovery (non-obvious), this is something
counterintuitive and the repetitive decisions, you must be able to use it in other situations

Data = facts and figures (not the information itself), when this is structured it will provide information
(this is the context of the data)

Big data = very large dataset, with 3 distance
characteristics -> the 3Vs

1. Volume = quantity of generated stored data
2. Variety = type of nature of data
3. Velocity = speed at which the data is generated
and processed

Data mining = the extraction of knowledge from data,
via technologies that incorporate these principles. You
use it for new data

Types of data analysis;
- Descriptive analytics (BI) = what has happened? -> simple descriptive statistics, dashboard,
charts, diagrams. Does not provide why it happened, or why it needs to change
- Predictive analytics = what could happen? -> segmentation, regressions. It provides information
on what the influence is
- Prescriptive analytics = what should we do? -> complex models for product planning and stock
optimization

, Data Science Capability as strategic asset

Data science is viewed as a capability, which is a strategic asset. Data and the capability to extract
useful knowledge from data can be a strategic asset. It provides competitive advantage

Big data refers to the big volume of information that companies can gather and have access to.
Information flows come from customer, suppliers and distributors. All this information has to be
structured. When you combine big data with effective analytics you have a key CA for organisations

Delta model =

1) D = data, this data must be clean, accessible and unique
2) E = enterprise wide focus, must be available for the entire organisation
3) L = leaders, leaders at all levels that promote data driven culture
4) T = targets, key business areas
5) A = analysists, that can accomplish the strategy

Business problem to data mining tasks

A collaborative problem-solving between business stakeholders and data scientists -> decomposing a
business problem into solvable subtasks. Match the subtasks with known tasks for which tools are
available. Solving the remaining non-matched subtasks (by creativity). Putting the subtasks together
to solve the overall problem

 If you want to find out who is your most profitable customer, you should break it into several
tasks = who are my customers, how can I segment them in profiles, are there differences in
characteristics that result in different revenue flows

Methods that can be used;
- Classification
- Regression
- Similarity matching
- Link prediction
- Clustering
- Profiling
- Co-occurrence grouping
- Data reduction
- Causal modeling

Supervised vs. Unsupervised

The methods can be either supervised or unsupervised learning methods. Supervised methods are
those where you are looking for something, unsupervised do not have a target variable. Target
variable can be seen as a dependent variable

Unsupervised learning, do not have specific outcomes. The machine tries to find specific patterns in
the data, it provides examples. Algorithm that is used in this type of learning;
- Clusters
- Anomaly detection
- Association discovery
- Topic modeling

Because this type of model does not have a ‘outcome’ these unsupervised learning methods cannot
be evaluated.
€7,99
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien


Document également disponible en groupe

Reviews from verified buyers

Affichage de tous les avis
2 année de cela

5,0

1 revues

5
1
4
0
3
0
2
0
1
0
Avis fiables sur Stuvia

Tous les avis sont réalisés par de vrais utilisateurs de Stuvia après des achats vérifiés.

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
JaelaBoot Tilburg University
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
268
Membre depuis
6 année
Nombre de followers
151
Documents
23
Dernière vente
1 mois de cela

4,3

19 revues

5
11
4
4
3
3
2
1
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions