Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Interview

Trigonometric Equations Gr11

Note
-
Vendu
-
Pages
11
Publié le
25-11-2021
Écrit en
2021/2022

Grade 11 Trig Equations explained in depth

Établissement
Cours









Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours
Schooljaar
200

Infos sur le Document

Publié le
25 novembre 2021
Nombre de pages
11
Écrit en
2021/2022
Type
Interview
Compagnie
Inconnu
Personne
Inconnu

Sujets

Aperçu du contenu

Grade 11 Trigonometry
Document 4: Trigonometric Equations
Solving equations (finding angles) when you know one of its ratios [e.g. tan 𝑥 = 0,45]
In Grade 10, you learnt to solve equations for angles less than 90 degrees (in other words, in the first quadrant).
In Grade 11, you learn to solve for angles greater than 90 degrees, or negative angles.
If sin 𝑥 , cos 𝑥 or tan 𝑥 has a particular value, and the angle 𝑥 lies between 0 and 360 degrees, the angle can
have TWO possible values, but your calculator will only give you one answer . So you have to determine both
answers, by using your calculator answer in a particular way.
Solving trig equations requires that we find the value(s) of the angles that satisfy the equation. If a specific
interval for the equation is given, then we will find the general solution, followed by the actual angles which
lie within the given interval.
The periodic nature of trig functions (the fact that they repeat their shape, and therefore their points, after a
certain number of degrees) means that there are many values that satisfy a given equation, as shown in the
diagram below:




1 1
Given above are graphs of 𝑦 = 𝑠𝑖𝑛𝑥 and 𝑦 = . When solving the equation sin 𝑥 = , all the 𝑥-values at which
2 2
the sin-curve and the horizontal line intersect, are solutions.
Here the given interval is −360° < 𝑥 < 360°.
1
There are 4 solutions. Using your calculator [shift sin 2 ] only gives 𝑥 = 30°. So we need a method to determine
the other 3 solutions in this example. We do this by first finding the “general solution”.
Developing the concept:
The period of the function 𝑦 = sin 𝑥 is 360°, which means the curve repeats every 𝟑𝟔𝟎°.
1 1
sin 30° = 2, but so does sin 390° = sin (30° + 360°) = sin 30° = 2.
1
sin 750° = sin (30° + 2 × 360°) =
2
1
sin 1 110° = sin(30° + 3 × 360°) =
2
1
Therefore, you can summarise the solutions as the GENERAL SOLUTION of the equation sin 𝑥 = 2:

Quad 1: 𝑥 = 30° + 𝑛. 360°, 𝑛 ∈ ℤ, or
Quad 2: 𝑥 = 180° − 30° + 𝑛. 360°, 𝑛 ∈ ℤ NOTE: 𝑛 ∈ ℤ means 𝑛 is any INTEGER.

some
books use
180° − 𝜃 𝜃 𝑘 instead
of 𝑛
180° + 𝜃 360° − 𝜃




Quadrant 4 could also use simply −𝜃. 1

, Worked Example 1: Find the GENERAL SOLUTION to the equation 𝟑 𝐬𝐢𝐧 𝟐𝒙 = −𝟎, 𝟕𝟓𝟕


Follow these steps always for solving trig equations with one ratio. Lets call this type ‘Pattern A’
Step 1: Solve for the given ratio/isolate the ratio:
3 sin 2𝑥 = −0,757
0,757
sin 𝟐𝒙 = − 3
NOTE: It is important to isolate the ratio (sin 2𝑥) even if the angle is compound
(the angle here is 2𝑥).

Step 2: Determine in which two quadrants the solution lies. Use the CAST diagram. This will be where the given
ratio is negative, in the given example; Write these down, leaving a few lines open in between:
Q3……………….
S A
……………….
Q4………………
……………….
Step 3 Fill in the following according to the quads:
Q3 2𝑥 = 𝟏𝟖𝟎° + ⋯ … ….(the reference angle) + 𝑛. 360°, 𝑛 ∈ ℤ
T C
The angle ………………………………………………………
Q4 2𝑥 = 𝟑𝟔𝟎° − ⋯ … ….(the reference angle) + 𝑛. 360°
……………………………………………………..



Step 4 Find the reference angle (the calculator angle) by pressing shift sin of the POSITIVE ratio (value)
0,757
and fill it in, correct to 2 decimal places [sin−1 ( ) = 14,62°].
3

The reference angle is the positive ACUTE angle between the 𝑥-axis and the rotating arm. (Be careful: if
you type the negative ratio into the calculator, then a negative angle is given and this is not the
reference angle. It would be the negative of the reference angle.
1
Eg. sin−1 − = −30, whereas the reference angle is actually 30°
2

NOW ONLY DO YOU SOLVE THE TWO EQUATIONS IN THE CHOSEN QUADRANTS:
Q3 2𝑥 = 𝟏𝟖𝟎° + 14,62° + 𝑛. 360°, 𝑛 ∈ ℤ
2𝑥 = 165,38° + 𝑛. 360°
∴ 𝑥 = 82,69° + 𝑛. 180° NOTE: Also divide the 360 by 2
Q4 2𝑥 = 𝟑𝟔𝟎° − 14,62° + 𝑛. 360° The + 𝑛360° or + 𝑛180° must
2𝑥 = 345,38° + 𝑛. 360° appear as soon as you start
working in the two quadrants.
𝑥 = 172,69° + 𝑛. 180°

𝑛 ∈ ℤ needs to appear ONCE
only somewhere in your solution.

2
€3,66
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
kalebroodt

Document également disponible en groupe

Faites connaissance avec le vendeur

Seller avatar
kalebroodt Cape Peninsula University of Technology
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
4
Membre depuis
4 année
Nombre de followers
3
Documents
49
Dernière vente
2 année de cela

0,0

0 revues

5
0
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions