Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4,6 TrustPilot
logo-home
Resume

Samenvatting Applied Multivariate Data Analysis (FSWPE-M040)

Note
-
Vendu
2
Pages
27
Publié le
23-11-2021
Écrit en
2020/2021

Een samenvatting van alle colleges, voorgeschreven literatuur en Q&A's van het vak: Applied Multivariate Data Analysis. De samenvatting is opgebouwd per week en omvat alle belangrijke begrippen en concepten.

Établissement
Cours










Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Publié le
23 novembre 2021
Nombre de pages
27
Écrit en
2020/2021
Type
Resume

Sujets

Aperçu du contenu

Summary statistics
Week 1
Lecture 1 + Q&A 1
 Statistical models = to represent what is happening in the real world; consists of parameters
and variables (perspective of reality, different ways of representing reality).
 Variables = measured constructs and vary across people in the sample.
 Parameters (b) = estimated from the data and represent constant relations between
variables in the model (act on variables).
SO: we compute the model parameters in the sample to estimate the value in the population.



The mean is a model of what happens in the real world; the typical score (not a perfect
representation of the data). A random distribution tells that the fit is not perfect  to see what the
distribution means: look at the error!
 Mean = value from which the (squared) scores deviate least (least error). Simple statistical
model of the center of a distribution of scores.

Standard deviation = how much observations in our sample differ from the mean value within our
sample.
Standard error = how well the sample mean represents the population mean. The SE is the standard
deviation of the sampling distribution of a statistic.




Mean squared error is more informative to compute the average dispersion. This is because we use
sample data to estimate the model fit in the population. N-1 because we estimate the population
mean with the sample mean.




MSE (s) is variance. Variance is a special case of a more general principle that you can apply to more
complex models; which is that the fit of the model can be assessed with either the sum of squared
error or the MSE.




1

,Mean (x̅) and SD (s) are obtained from a sample, but used to estimate the mean () and SD () of the
population.



(SEx = standard error of the mean)
S is sample standard deviation; the larger N, the smaller SE and the more the sample mean is
representative of the population.

Margin of error (t(df) * SE) is smaller in larger samples  larger samples produce more reliable
estimate of the population mean.

Confidence interval: for 95% of all possible samples the population mean will be within its limits.
 95% CI calculated by assuming the t-distribution as representative of the sampling
distribution. Look up t-distribution in table.




APA how to report: M = 8.0; 95% CI [6.0, 10.0]
Graphical representation: error bars with bars representing “margin of error”
Important: check whether zero falls within CI, if yes, you cannot say that it differs from zero because
it is within the range.
Interpretation:
 CI is a range of plausible values for . Values outside Ci are relatively implausible.
 The lower limit of CI implies a statistically significant improvement in …, but not a clinically
relevant one. The upper limit implies a clinically important change.
 The margin of error is …: we can be 95% confident that our point estimate is no more than 2
points from the true value of .
The smaller the margin of error the more precise our estimate is.

Null hypothesis, H0  there is not effect
Notation: H0:  = 0
Alternative hypothesis, H1
Notation: H1:   0
 we reject our null hypothesis because we find our sample result unlikely when the null hypothesis
would be true.



2

, When our H0 concerns one population mean (H0:  = 0)  NHST = one-sample t-test. SO: any value
outside 95% CI has p <.05
When our H0 concerns the difference between two independent population mean (H0: 1 - 2 = 0) 
NHST = independent-samples t-test. The amount of overlap of the 95% Cis of the two sample means,
helps us infer the p-value of the independent samples t-test.

Effect size = objective and standardized measure of the magnitude of the observed effect. There are
several effect size measures:
 Cohen’s d: when looking at differences between groups




 Pearson’s r or R-squared: when looking at correlations
 (Partial) eta-squared: when doing multiple variables.
Rules of thumb for interpreting effect sizes:
1. R = .1, d = .2  small effect explains 1% of the total variance
2. R = .3, d = .5  medium effect explains 9% of the total variance
3. R = .5, d = .8  large effect explains 25% of the total variance

Pooled standard deviation:




Be aware of:
 Significant effect does not mean important effect
o Non-significant effect does not mean H0 is true.
o Simplistic all-or-nothing thinking




 Type 1 errors = you’re claiming there is an effect
when in fact there is not (alpha level)
 Type 2 errors = you’re claiming there is no effect
in the population but there actually is (beta level)
 P-values can vary greatly from sample to sample

Test statistic = statistic for which we know how frequently different values occur.

How to report NHST:
1. Report raw effect (parameter) with 95% CI, give interpretation of both limits of 95%.
2. Report test statistic; statistic, df, exact p-values.
3. Report and interpret effect size (or standardized parameter).
E.g. (M = 8.0, 95% CI [6.0, 10.0], t(4) = 11.27, p < .001, d=2.5)




3
€7,49
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
celinetijssen Erasmus Universiteit Rotterdam
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
19
Membre depuis
5 année
Nombre de followers
17
Documents
13
Dernière vente
3 année de cela

0,0

0 revues

5
0
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions