Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Samenvatting Getallen en Bewerkingen: Hele getallen & Wiskunde in de praktijk: Kennisbasis

Vendu
16
Pages
45
Publié le
13-11-2021
Écrit en
2020/2021

Deze samenvatting is voor het tentamen Getallen en Bewerkingen op de pabo. In de samenvatting is het boek Hele getallen (H1 t/m 5, H7 en H8 blz. 225 en 226) en het boek Wiskunde in de praktijk: Kennisbasis (H1) samengevat. De samenvatting is uitgebreid, maar wel heel volledig. Daarnaast staan er ook voorbeelden in om de leerstof te verduidelijken. Ik heb met deze samenvatting een 8.2 gehaald! Heel veel succes met leren!

Montrer plus Lire moins
Établissement
Cours











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Livre connecté

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Livre entier ?
Non
Quels chapitres sont résumés ?
Hoofdstuk 1 t/m 5, hoofdstuk 7, hoofdstuk 8 alleen blz. 225 en 226
Publié le
13 novembre 2021
Nombre de pages
45
Écrit en
2020/2021
Type
Resume

Sujets

Aperçu du contenu

Getallen en bewerkingen – Hele getallen & Wiskunde in de praktijk: Kennisbasis

Brom-Snijders, P. van den, Bergh, J. van den, Hutten, O., & Zanten, M. van (2014). Hele getallen.
Amersfoort: ThiemeMeulenhoff. Hoofdstuk 1, 2, 3, 4, 5, 7 en 8 (alleen p. 225 en 226).

Oonk, W., Keijzer, R., Lit, S., & Figueiredeo, N. (2020). Rekenen en wiskunde in de praktijk:
Kennisbasis. (2e ed.) Groningen: Noordhoff. Hoofdstuk 1

,Getallen en bewerkingen – Hele getallen

Hoofdstuk 1: Hele getallen
1.1 Getallen zie je overal
 Zonder getallen zou de samenleving tot stilstand komen te staan. Ook het geluid uit
oordopjes en beelden op een beeldscherm bestaan uit getallen.
 Getallen helpen je om de wereld te ordenen, te structureren en te organiseren. Ze komen in
veel verschillende situaties en betekenissen voor.
 De betekenis van een getal hangt af van de verschijningsvorm of de functie.
o Telgetal of ordinaal getal = rangorde in de telrij of een nummer.
 1, 2, 3, 4 etc.
 De eerste, de tweede, nummer 3 etc.
o Hoeveelheidsgetal of kardinaal getal = een hoeveelheid.
o Naamgetal = het getal heeft een naam.
 Buslijn 4, buslijn 13, buslijn A.
o Meetgetal = geeft een maat aan, er staat ook altijd een maat bij!
 Vier jaar, vijf meter, 10 graden etc.
o Formeelgetal = een kaal rekengetal (zoals in een som).
 36 x 125 = 4500.
1.1.1 Getallen
 Natuurlijke getallen = getallen waarmee we tellen en rekenen
 Negatieve getallen kan je vergelijken met meetgetallen: temperatuur/graden onder nul.
 Hele getallen = alle natuurlijke en hele negatieve getallen.

1.2 Ons getalsysteem
 Talstelsel/ getallenstelsel/ getalsysteem = het systeem om getallen in een rij cijfers weer te
geven.
o Ons getalsysteem is in 1202 door Leonardo van Pisa in West-Europa geïntroduceerd.
1.2.1 Eigenschappen van het getalsysteem
 Het Arabische getalsysteem:
o Decimaal = tientallig
o 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
o Alle getallen kunnen worden gemaakt a.d.h.v. de plaatswaarde/positiewaarde van
het cijfer.
 325: de 3 is 300 waard, de 2 is 20 waard, de 5 is 5 waard.
 Positionele notatie: de manier waarop de cijfers worden genoteerd.
1.2.2 Uit de geschiedenis van getalsystemen
 Het Egyptische en Romeinse getalsysteem is een additief systeem. Dit betekent dat de
waarde van het getal bepaald wordt door het totaal van de symbolen.
 Het nieuw-Romeinse getalsysteem heeft een substractief principe. Dit houdt in dat als je een
bepaald symbool voor het andere symbool wordt geplaatst, je de waarde hiervan van elkaar
aftrekt.
o Alleen de volgende combinaties zijn hierbij toegestaan:
 I voor V
 I voor X
 X voor L
 X voor C
 C voor D
 C voor M
o Nieuw-Romeinse getalsysteem: 14 = XIV
o Oud-Romeinse getalsysteem: 14 = XIII

,  In het nieuw-Romeinse getalsysteem mogen de V, L en D maar één keer voorkomen.




Het Egyptische getalsysteem
1.2.3 Andere talstelsels Het Romeinse getalsysteem
 Binaire getalsysteem: tweetallig – alle getallen
worden geschreven met twee cijfers (0 en 1).
Symbolen van de Maya's  Octale getalsysteem: achttallig – de basis is acht.
 Hexadecimale getalsysteem: zestientallig – de basis is zestien.
 Sexagesimale getalsysteem: zestigtallig – de basis is zestig.
 Babylonische getalsysteem
 Metriek stelsel: elke eenheid wordt in stappen van toen groter of kleiner.

1.3 Eigenschappen van getallen
 Hele getallen hebben verschillende en bijzondere eigenschappen.
1.3.1 Deelbaarheid
 Een getal is deelbaar door een ander getal als de ‘rest’ bij de deling gelijk is aan 0.
 Deelbaar door 2
o 10, 100, 1000 etc. zijn allemaal deelbaar door 2
o Alle getallen die de volgende eindcijfers hebben: 0, 2, 4, 6 of 8 (even getal!).
 Deelbaar door 3
o De som van de cijfers is deelbaar door 3.
 Deelbaar door 4
o 100, 1000 etc. zijn allemaal deelbaar door 4
o Als het getal dat gevormd wordt door de laatste twee cijfers, deelbaar is door 4.
o Voorbeeld: 356 is deelbaar door 4. 56:4 = 14.
 Deelbaar door 5
o Alle getallen die de volgende eindcijfers hebben: 0 of 5.
 Deelbaar door 6
o Het getal moet even zijn.
o De som van de cijfers moet deelbaar zijn door 3.
 Voorbeeld: 356 is niet deelbaar door 6, want 3 + 5 + 6 = 14. 14 kan je niet
delen door 3.
 Deelbaar door 7
o Het laatste cijfer van het getal afhalen. Dit keer 2. Dat afhalen van het hele getal. Als
je de uitkomst kan delen door 7, is het deelbaar door 7!
 Voorbeeld: 364 is deelbaar door 7. 36 - (4 x 2) = 36. 36 - 8 = 28. 28 : 7 = 4.
 Deelbaar door 8
o Het getal dat wordt gevormd door de laatste 3 cijfers deelbaar is door 8.
 Voorbeeld: 456 is deelbaar door 8. 400 : 8 = 50 en 56 : 8 = 7.
 Deelbaar door 9
o De som van de cijfers is deelbaar door 9.

 Deelbaar door 10
o Alle getallen die het volgende eindcijfer heeft: 0.
1.3.2 Priemgetallen
 Priemgetal (strookgetal) = een getal dat allen zichzelf en 1 als deler heeft.

,  Getallen kun je ontbinden in factoren. Ontbinden is het zoeken naar getallen die met elkaar
vermenigvuldigd weer het oorspronkelijke getal opleveren.
 GGD = grootse gemene deler.
o Het grootste getal dat deler is van twee of meer hele getallen.
o Ontbinden in factoren om de GGD te bepalen!
 KGV = kleinste gemene veelvoud.
o Het kleinste getal dat veelvoud is van twee of meer getallen (dat kleinste getal kan
gedeeld worden door de twee of meer andere getallen.
o Ontbinden in factoren om de KGV te bepalen!
Voorbeeld GGD
Bepaal de GGD van 24 en 92.
24 = 2 x 2 x 2 x 3
92 = 2 x 2 x 23
GGD = 2 x 2 = 4 (de overeenkomstige priemfactoren met elkaar vermenigvuldigen)

1.3.3 Volmaakte getallen
 Volmaakt getal = een positief getal dat gelijk is aan de som van zijn delers, behalve zichzelf.
 Volmaakte getallen onder de 100:
Voorbeeld KGV
Bepaal de KGV van 14 en 26.
14 = 2 x 7
26 = 2 x 13
KGV = 2 x 7 x 13 = 182 (niet 2 x een 2, omdat er bij beide een 2 voorkomt – streept de ander weg).
o 6: 1 + 2 + 3 = 6
o 28: 1 + 2 + 4 + 7 + 14 = 28
 Eerst volgende volmaakte getal is 496.
1.3.4 Figurale getallen
 Figurale getallen = getallen die je in een stippenpatroon kunt leggen.
o Driehoeksgetallen.
o Rechthoeksgetallen.
o Vierkantgetallen (kwadranten).
o Kubusgetallen (3D).
o Piramidegetallen (3D).

1.4 Basisbewerkingen
 Optellen, aftrekken, vermenigvuldigen en delen.
1.4.1 Betekenissen van bewerkingen
 Optellen: samen nemen, aanvullen of toevoegen.
 Aftrekken: eraf halen, weghalen, wegnemen, verminderen, wegdenken of verschil bepalen
(zowel een eraf-opgave als een erbij-opgave).
 Vermenigvuldigen: herhaald optellen, oppervlakte bepalen, combineren, gelijke sprongen
maken of schaal vergroten.
 Delen: herhaald aftrekken, opdelen of verdelen.
o Opdelen: herhaald optrekken of vermenigvuldigen. Je weet hoe groot het groepje is
en gaat bepalen hoeveel groepjes er zijn.
 50 knikkers worden verpakt in zakjes van elk 10 knikkers. Hoeveel zakjes zijn
er nodig?
o Verdelen: herhaald aftrekken of één voor één uitdelen. Je weet hoeveel groepjes er
zijn en gaat bepalen hoe groot een groepje is.
€5,48
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Reviews from verified buyers

Affichage de tous les 2 avis
6 mois de cela

3 année de cela

3,5

2 revues

5
0
4
1
3
1
2
0
1
0
Avis fiables sur Stuvia

Tous les avis sont réalisés par de vrais utilisateurs de Stuvia après des achats vérifiés.

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
emmavgilst02 Hogeschool InHolland
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
16
Membre depuis
4 année
Nombre de followers
13
Documents
3
Dernière vente
8 mois de cela

3,5

2 revues

5
0
4
1
3
1
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions