Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Samenvatting en begrippenlijst. Rekendidactiek: Hele getallen, ISBN: 9789006955361 Getallen En Bewerkingen - Rekenen Wiskunde

Vendu
48
Pages
24
Publié le
29-10-2021
Écrit en
2021/2022

Dit is een samenvatting van het boek Hele getallen. Voor het tentamen getallen en bewerkingen zijn deze hoofdstukken erg belangrijk. Aan het einde van de samenvatting is er een begrippenlijst toegevoegd zodat alle begrippen nog een keer extra geoefend kunnen worden.

Montrer plus Lire moins
Établissement
Cours










Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Livre connecté

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Livre entier ?
Non
Quels chapitres sont résumés ?
Hoofdstuk 1 t/m 5 en hoofdstuk 7
Publié le
29 octobre 2021
Nombre de pages
24
Écrit en
2021/2022
Type
Resume

Sujets

Aperçu du contenu

Getallen en bewerkingen

Hoofdstuk 1 Hele getallen

1.1 Getallen zie je overal
Getallen komen in het dagelijks leven in verschillende situaties en betekenissen voor. De betekenis
van een getal hangt af van de verschijningsvorm of functie van een getal. Getallen gebruik je om te
nummeren, tellen en om aantallen aan te geven. Zo geeft een telgetal (ordinaalgetal) de rangorde
aan in de telrij maar ook een nummer. Een hoeveelheidsgetal (kardinaalgetal) geeft een bepaalde
hoeveelheid aan. Bij een naamgetal heeft het getal vooral een naam. Een meetgetal geeft een maat
aan. Een formeel getal is een kaal rekengetal.
In de wiskunde worden getallen waarmee je kan tellen natuurlijke getallen genoemd. Hiermee kun
je ook rekenen, de uitkomst van die opgaven zijn weer natuurlijke getallen. Wanneer getallen in de
min komen worden het negatieve getallen genoemd. Hele getallen bestaan uit alle natuurlijke en de
negatieve hele getallen.

1.2 Ons getalsysteem
Het systeem om alle getallen in een rij van cijfers weer te geven heet, talstelsel, getallenstelsel of
getalsysteem. Het Arabische talstelsel ken een decimale structuur. Dit betekent tientallig. Met cijfers
0 t/m 9 kunnen alle getallen geschreven worden door gebruik te maken van de plaats van cijfers in
een getal. Een getal bestaat uit 1 of meer cijfersymbolen. De plaats of positie van een cijfer in dit
rijtje bepaalt de waarde van het cijfer (plaatswaarde of positiewaarde). Positionele notatie is de
manier van hoeveelheden noteren. Positionele notatie is kenmerken voor een positioneel
getalsysteem. De 0 is in ons getalsysteem erg belangrijk, deze zorgt namelijk voor de correcte positie
van de andere cijfers. Elk cijfer in een getal heeft een positie waarde die correspondeert met een
macht van 0.
Het Egyptische en het Romeinse getalsysteem zijn voorbeelden van een additief systeem. Hierin zijn
de waarde van het voorgestelde getal bepaald door het totaal van de symbolen. In het nieuw-
Romeinse getalsysteem werd ook gebruikgemaakt van het substractief principe: als een symbool
met een kleinere waarde voor een symbool met een hogere waarde staat, wordt de waarde van het
eerste symbool afgetrokken van de waarde van het tweede symbool.
De computerwereld draait op het binair (tweetallig) en hexadecimale (zestientallig) talstelsel. Tijd en
hoekmetingen worden gedaan door het sexagesimale (zestigtallig) of babylonische talstelsel. Deze
talsystemen hebben allemaal een andere basis. Het binaire talstelsel heeft een tweetallige
bundeling: alle getallen worden geschreven met 2 cijfers namelijk 0 en 1. Hexadecimale talstelsel
heeft een basis van 16, het octale stelsel van 8 en het sexagesimale stelsel van 60. Tijdens de Franse
revolutie werd het metriek stelsel ingevoerd. Kenmerken hiervoor is dat elke eenheid in stappen van
10 groter of kleiner wordt.

1.3 Eigenschappen van getallen
Deelbaarheid:
Splitsen en ontbinden is belangrijk bij het rekenen met hele getallen. Bij ontbinden kun je
gebruikmaken van de deelbaarheid van getallen. Een getal is deelbaard door een ander getal als de
rest bij de deling gelijk is aan 0.
Priemgetallen: Een priemgetal is een getal dat alleen zichzelf en het getal 1 als deler heeft. Dit noem
je ook wel strookgetal.
Getallen kun je ontbinden in factoren. Ontbinden is het zoeken naar getallen die met elkaar
vermenigvuldigd weer het oorspronkelijke getal opleveren. Je rekent uit door welke priemgetallen je

,het getal kan delen. GGD staat voor grootste gemene deler. Het gaat om het grootste getal dat de
deler is van 2 of meer hele getallen. Bij het zoeken van de grootste gemene deler kan je
gebruikmaken van ontbinden in priemgetallen. KGV staat voor kleinste gemene veelvoud. Het gaat
om het kleinste getal dat veelvoud is van 2 of meer getallen.
Volmaakte getallen: Een volmaakt getal is een positief getal dat gelijks is aan de som van zijn delers,
behalve zichzelf
Figurale getallen:
Figurale getallen zijn getallen die je in een stippen patroon kunt leggen, zo heb je driehoeksgetallen
rechthoeksgetallen (de hoeveelheid kan je in een rechthoekig patroon leggen) en vierkantsgetallen
(ook wel kwadranten genoemd). Je hebt ook kubusgetallen of piramidegetallen, deze zijn
driedimensionaal.

1.4 Basisbewerkingen
Betekenis van bewerkingen kunnen uit allerlei situaties worden afgeleid. Optellen kan de betekenis
hebben van samen nemen, aanvullen of toevoegen. Aftrekken kan de betekenis hebben van eraf
halen, weghalen of wegnemen, verminderen, wegdenken of verschil bepalen tussen 2 getallen.
Vermenigvuldigen kan de betekenis hebben van herhaald optellen, oppervlakte bepalen,
combineren, gelijke sprongen maken of op schaal vergroten. Delen kan de betekenis hebben van
herhaald aftrekken, opdelen of verdelen. Opdelen kan ook gezien worden als herhaald optellen of
vermenigvuldigen.

Eigenschap van bewerkingen:
Bij het optellen en vermenigvuldigen kun je gebruik maken van de communicatieve of
wisseleigenschap. Waarbij je de termen of factoren mag verwisselen. Dit geldt niet voor aftrekken of
delen. Bij optellen en vermenigvuldigen kun je ook gebruik maken van de associatieve eigenschap.
Bij drie of meer getallen kun je kiezen welke getallen je eerst optelt of vermenigvuldigt. Je kan ook
gebruikmaken van de disrubtieve of verdeeleigenschap. Ook kan je de inverse relatie tussen optellen
en aftrekken en tussen vermenigvuldigen en delen benutten.
Wiskunde taal bij hele getallen: Als je getallen in woorden uitspreek geldt de systematiek van het
decimale positionele getalsysteem.

Taal van bewerkingen:
Een bewerking bestaat uit verschillende termen en functies. Termen zijn vaak getallen maar kunnen
ook letters zijn. Functies geven aan wat er met die termen gebeurt. Je kan verschillende manieren
gebruiken om hoofdbewerkingen te beschrijven: som, verschil, product, quotient, aftrektal,
aftrekker, vermenigvuldiger, vermenigvuldiggetal, deeltal en deler. De operator bewerkt de operand.
Een getal herhaaldelijk met zichzelf vermenigvuldigen is een macht. Bijzonder symbool is het =
teken. Dit geeft aan dat beide zijden gelijk zijn.


Hoofdstuk 2 Ontluikende gecijferdheid

2.2 Elementair getalbegrip
Bij de ontwikkeling van elementair getalbegrip Speelt het leren tellen een rol. Elementair getalbegrip
is het herkennen van de verschillende functies en betekenissen van getallen en het verkennen van
de opbouw van getallen. De oriëntatie van kinderen op de wereld omvat veel wiskundige
elementen. Bij deze wiskundige wereldorientatie gaat het om leveren van reken-wiskundige
begrippen en het vergroten van handelingsmogelijkheden van kinderen. Dit vindt plaats in voor

, kinderen betekenisvolle situaties. In een basisschool is dit voor kinderen een rijke leeromgeving: die
leerlingen uitnodigt om op onderzoek te gaan. De leerkracht moet ervoor zorgen dat hij steeds
aansluit bij de zone van naaste ontwikkeling: Bij dat wat de leerling zonder begeleiding nog net niet
kan doen, maar met begeleiding al wel.

Leren tellen:
Door veel te tellen krijgen kinderen steeds meer grip op de telrij. Al van jongs af aan krijgen kinderen
steeds meer vat op hoeveelheden. Bij een 1-1-relatie gaat het om een 1 op 1 koppeling. De
ontdekking dat je zo zonder te tellen ook kunt bepalen van welke er meer of minder zijn, is vaak een
openbaring. Jonge kinderen herkennen kleine hoeveelheden. Later worden ze zich ook bewust welk
telwoord daarbij hoort. Subiteren is direct of onmiddellijk zien. Er is sprake van akoestisch tellen als
de telrij hardop wordt opgezegd. Kinderen tellen de hoeveelheid 1 voor 1 maar aanwijzen en
hardoptellen gaan nog niet gelijk, dit is asynchoon tellen. Bij synchroon tellen kan een kind
tegelijkertijd voorwerpen aanwijzen en het juiste telwoord noemen. Kinderen zijn in staat om een
hoeveelheid te tellen en al aanwijzend de juiste telwoorden te gebruiken. Tellen verloopt synchroon
en kinderen kunnen het resultaat, de uitkomst van het tellen aangeven, dit is resultatief tellen en
beperkt zich niet tot geordende hoeveelheden. Kind kan resultatief tellen als het: 1. een telrij in de
juiste volgorde opzegt. 2. Een correcte 1 op 1 relatie legt tussen de gebruikte telwoorden en getelde
voorwerpen. 3. Begrijpt dat het laatstgenoemde getal het aantal getelde voorwerpen aangeeft, hier
legt het kind een koppeling tussen hoeveelheidsgetal (kardinaalgetal) en telgetal (ordinaalgetal). Een
kind kan leren telhandelingen te structureren en verkorte tel strategieën te hanteren. Zoals verkort
tellen en tellen met sprongen. Contextgebonden tellen is betekenisvol tellen, het gaat erom dat het
voor kinderen betekenisvol is om te tellen. Objectgebonden tellen is het tellen van dingen zonder
specifieke betekenis. Formeel tellen is de meest abstracte vorm van tellen en houdt in dat kinderen
los van context of objecten flexibel kunnen tellen.

Rekenvoorwaarden:
Onder rekenvoorwaarden vallen alle aspecten van de ontluikende gecijferdheid. Resultatief tellen
zijn belangrijke rekenvoorwaarden voor het rekenen in groep 3. Ook zijn rekentaalbegrippen van
belang, kennis van aantallen, betekenissen van getallen, cijfersymbolen en meten en maatbegrip.
Piaget onderscheidt 4 belangrijke rekenvoorwaarden:
1. Begrip van conservatie: Het inzien dat hoeveelheid hetzelfde blijft ook al veranderd de vorm.
2. Correspondentie: Het kunnen leggen van 1 op 1 relaties. Dit is belangrijk voor het synchroon
tellen.
3. Classificatie: Het maken van groepen op basis van een of meer gemeenschappelijke
kenmerken.
4. Seriatie: Het aanbrengen van een volgorde.

Betekenis van getallen:
Kinderen komen vroeg in aanmerking met allerlei verschillende betekenissen van getallen. De
verschillende betekenissen zijn:
- Hoeveelheidsgetal/ kardinaalgetal: geeft een bepaalde hoeveelheid aan
- Telgetal/ ordinaalgetal: geeft de rangorde in een telrij aan of een nummer
- Meetgetal: geeft de maat aan
- Naamgetal: getal geeft vooral een aanduiding
- Formeelgetal: kaal rekengetal
€3,99
Accéder à l'intégralité du document:
Acheté par 48 étudiants

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Reviews from verified buyers

Affichage de tous les 5 avis
1 année de cela

1 année de cela

2 mois de cela

3 année de cela

3 année de cela

3,8

5 revues

5
1
4
2
3
2
2
0
1
0
Avis fiables sur Stuvia

Tous les avis sont réalisés par de vrais utilisateurs de Stuvia après des achats vérifiés.

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
sanneesmeemeijer Hogeschool InHolland
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
50
Membre depuis
4 année
Nombre de followers
34
Documents
4
Dernière vente
1 mois de cela

3,8

5 revues

5
1
4
2
3
2
2
0
1
0

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions