Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Summary Book Evolutionary Computing by Eiben & Smith

Note
-
Vendu
6
Pages
27
Publié le
18-10-2021
Écrit en
2021/2022

This document contains a summary of chapters 1-10,12,13, and 17. It helps you to get a feeling for the important subjects that are covered in the book. If you study this, together with your own notes and the slides of the professor, you are well prepared. Good luck!

Montrer plus Lire moins
Établissement
Cours










Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Livre connecté

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Livre entier ?
Non
Quels chapitres sont résumés ?
1 t/m 10, 12, 13, 17
Publié le
18 octobre 2021
Nombre de pages
27
Écrit en
2021/2022
Type
Resume

Sujets

Aperçu du contenu

Summary Evolutionary Computing – Berend Markhorst




Table of content

Chapter 1 – Problems to be solved .................................................................................................................. 3

Chapter 2 – Evolutionary Computing: The Origins ........................................................................................... 4

Chapter 3 – What is an evolutionary algorithm? ............................................................................................. 5

Chapter 4 – Representation, mutation, and recombination ............................................................................. 8
Binary representation ......................................................................................................................................... 8
Integer representation ........................................................................................................................................ 9
Real-valued representation ................................................................................................................................ 9
Tree representation .......................................................................................................................................... 11

Chapter 5 – Fitness, Selection and Population Management ......................................................................... 11

Chapter 6 – Popular Evolutionary Algorithm Variants ................................................................................... 13
Genetic Algorithms ........................................................................................................................................... 13
Evolution Strategies .......................................................................................................................................... 14
Evolutionary Programming ............................................................................................................................... 14
Genetic Programming....................................................................................................................................... 14
Learning Classifier Systems ............................................................................................................................... 15
Differential evolution ........................................................................................................................................ 15
Particle Swarm Optimisation ............................................................................................................................ 16
Estimation of Distribution Algorithms .............................................................................................................. 16

Chapter 7 – Parameters and Parameter Tuning ............................................................................................. 16

Chapter 8 – Parameter Control ..................................................................................................................... 18
Changing parameters ....................................................................................................................................... 18
Changing the penalty coefficients .................................................................................................................... 18
Classification of control techniques .................................................................................................................. 19

Chapter 9 – Working with Evolutionary Algorithms ....................................................................................... 20
Performance measures ..................................................................................................................................... 20

Chapter 10 – Hybridization with Other Techniques: Memetic Algorithms...................................................... 22
Local search ...................................................................................................................................................... 22
MA’s structure .................................................................................................................................................. 23
Adaptive MAs ................................................................................................................................................... 24
Design issues for MAs ....................................................................................................................................... 24

Chapter 12 – Multiobjective Evolutionary Algorithms ................................................................................... 24
EA Approaches to MOPs ................................................................................................................................... 25



1

,Summary Evolutionary Computing – Berend Markhorst

Chapter 13 – Constraint Handling ................................................................................................................. 25
Approaches to handling constraints ................................................................................................................. 25

Chapter 17 – Evolutionary robotics ............................................................................................................... 26




2

, Summary Evolutionary Computing – Berend Markhorst


Chapter 1 – Problems to be solved
The field of evolutionary computing is primarily concerned with problem solvers.
The classification of problems in this section is based on a black box model of computer
systems. When input is provided, the system processes that input through some
computational model, whose details are not specified in general. In essence there are three
components: input, model and output.
Optimization, e.g. travelling salesman problem. For a given instance of this problem, we
have a formula (the model) that for each given
sequence of cities (the inputs) will compute the
length of the tour (the output).
Modelling, e.g. voice control system for smart
homes. The set of all phrases pronounced by the
user (inputs) must be correctly mapped onto the
set of all control commands in the repertoire of
the smart home. It is important to note that
modelling problems can be transformed into
optimization problems.
Simulation, e.g. performing what-if analyses.
An assumption behind the black box view is that a computational model is directional: it
computes from the inputs towards the outputs and it cannot be simply inverted. This implies
that solving a simulation problem is different from solving an optimization or a modelling
problem.
The process of problem solving can be viewed as a search through a potentially huge set of
possibilities to find the desired solution. Search space: collection of all objects of interest
including the solution we are seeking.
Problems à define search spaces. Problem
solvers à methods that tell us how to move
through search spaces.
Objective function à way of assigning a value
to a possible solution that reflects its quality
on a scale. Constraint à represents a binary
evaluation telling us whether a given
requirement holds or not.
The nature of a problem is less obvious than it
may seem; you can model something as a FOP, CSP or COP.
There are two kinds of optimization problems: numerical and combinatorial. Then there’s
problem size (which is grounded in the dimensionality of the problem at hand) and running-
time (usually the worst-case scenario). Problem reduction: we can transform one problem
into another via a suitable mapping.
Class P: there exists an algorithm that
can solve it in polynomial time. Class NP:
it can be solved by some algorithm and
any solution can be verified within
polynomial time. Note that P is a subset
of NP. Class NP-complete: if it belongs to
the class NP and any other problem in NP
can be reduced to this problem by an


3
€10,49
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
berendmarkhorst St Ignatiusgymnasium (Amsterdam)
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
93
Membre depuis
9 année
Nombre de followers
85
Documents
28
Dernière vente
2 mois de cela

Hoi! Ik ben Berend, ik kom uit Amsterdam en ik ben in 2016 (cum laude) afgestudeerd aan het IG (St. Ignatiusgymnasium). Hier heb ik hard voor gewerkt en daar de nodige samenvattingen bij gemaakt. Door middel van deze site kun jij daar nu ook gebruik van maken (en kan ik er m'n lunch tijdens m'n studie mee bekostigen). Groetjes, Berend

3,3

6 revues

5
1
4
2
3
2
2
0
1
1

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions