Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

samenvatting analyses ARMS (PROCESS&SPSS)

Note
-
Vendu
6
Pages
54
Publié le
04-10-2021
Écrit en
2020/2021

Dit is een samenvatting voor het vak ARMS van de UU. Het betreft een overzicht van verschillende analyse methodes met uitgebreide voorbeelden middels screenshots van SPSS. De samenvatting is gebaseerd op de oefeningen van het programma Grasple en de collegeslides etc. van het vak ARMS.

Montrer plus Lire moins
Établissement
Cours










Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Publié le
4 octobre 2021
Nombre de pages
54
Écrit en
2020/2021
Type
Resume

Sujets

Aperçu du contenu

SPSS Grasple
Inhoud
Simple linear regression.........................................................................................................................2
Multiple regression.................................................................................................................................5
Moderation Analysis using multiple regression....................................................................................11
Moderation analysis using multiple regression in PROCESS.................................................................13
Meditation analysis..............................................................................................................................16
Bootstrapping.......................................................................................................................................20
T-test....................................................................................................................................................21
ANOVA..................................................................................................................................................22
ANCOVA................................................................................................................................................32
MANOVA..............................................................................................................................................39
Repeated Measures analysis................................................................................................................42
Mixed designs.......................................................................................................................................47
Overzicht..............................................................................................................................................49
Open science : Registered Reports.......................................................................................................51
Effect sizes............................................................................................................................................53




1

,Simple linear regression
Regression models describe the relationship between variables by fitting a line to the observed data.
Linear regression models use a straight line. Regression allows you to estimate how a dependent
variable changes as the independent variable(s) change.


Example research question:
Is there a relation between income and happiness (on a scale from 1 to 100)?

Independent variable 1 Numerical:
(predictor variable) ratio/interval
Dependent variable 1 Numerical:
(outcome variable) ratio/interval

correlation coefficient:
 To asses the strength of a linear relationship
 Pearson’s R
o An absolute value of 1 indicates maximum strength of a relation
between two variable
o A value of 0 indicates no linear relation between the two variables
o Describes the strengths of the corelation, not the causal effects!


The formula
predicted Yvalue=intercept +slope x Xvalue
^y =b0 +b1 x (y= a +bx)


b 0 = intercept b 1 x = slope


Drawing a scatter plot provides you with valuable information about the strength and the direction of
the relationship:
 Calculating the predicted value by using the slope (R.C = if x increases by 1, how much
does y increase)

 Now that we know the slope  we need to figure out where to place it (vertically) on the y-
axis. To be able to make a correct prediction we also need to know the intercept
Intercept = the point where the regression line crosses the y-axis

 Now that we know the line's two essential components, we can use these to make
predictions:
predicted Yvalue=intercept +slope x Xvalue
^y =b0 +b1 x (y= a +bx)


b 0 = intercept b 1 x = slope

Note: The hat on y is used to denote that this is not the observed y-score but the predicted y-score.


 the least squares method:
a method that statisticians use to draw the most suitable line

2

, 1. Draw a scatterplot
2. We use the regression equation to use the values of X to predict the value of Y = the
predicted value. The observed value can be different.
3. The distance between the true value/observed Y and the predicted value ^y
is called the error of residual
Residual = y− ^y
4. Now we have tried to draw the line in such a way that we minimize the
errors.
 the positive and negative errors cancel each other. The sum of all errors
then is always zero.
5. When we square the errors, they will always be positive and they do not cancel each
other. This way we can look for the line that will result in the smallest possible sum of
squared errors. This method is called the least squares method.
6. You don’t need to be able to compute the best fitting linear regression model, that is, the
values for B0 and B1, because we have software (SPSS) that provides these values for us. But
then we need to know how to interpret a output


Intercept (spss = constant) & Slope
r-squared: Percentage of the variance
Highest standarized coefficients Beta: is best predictor
The importance of a predictor can only be evaluated using the
Beta-values. The output shows that Position is the strongest
predictor.
B-values: are influenced by the scale on which the variable is
measured so should not be used to evaluate the
importance/relevance of an effect.
p-values: are influenced by sample size and should never be
used to evaluate the importance/relevance of an effect.


7. You want to assess how well the fit of the prediction is with a so called goodness of
fit number. An example of a goodness of fit number is the R-squared.
The R-squared:
 The R-squared determines the amount of variance of the response
variables that is explained by the predictor variable. The R-squared is a
proportion between 0 and 1.
 If the R-squared is very small, this does not mean that there is no
meaningful relationship between the two variables. The relationship
could still be practically relevant, even though it does not explain a large
amount of variance.
 If the R-squared is very large, this does not mean that the model is useful
for predicting new observations. A very large R-squared could be due to
the sample, and might not predict well in a different sample.




3
€5,99
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
BvanderZee Universiteit Utrecht
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
66
Membre depuis
7 année
Nombre de followers
56
Documents
5
Dernière vente
3 mois de cela

3,8

9 revues

5
2
4
5
3
1
2
0
1
1

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions