Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Summary Business Intelligence and Data Management full course

Note
-
Vendu
4
Pages
122
Publié le
29-04-2021
Écrit en
2020/2021

Summary of 122 pages for the course Business Intelligence and Data Management at UVT (Full course notes.)

Établissement
Cours











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Publié le
29 avril 2021
Nombre de pages
122
Écrit en
2020/2021
Type
Resume

Sujets

Aperçu du contenu

BUSINESS INTELLIGENCE & DATA MANAGEMENT
Dr. Emiel Caron & Dr. Ekaterini Ioannou & Dr. Poonacha Medappa



TABLE OF CONTENTS

LECTURE 1: INTRODUCTION TO BI AND DATABASE SYSTEMS ........................................................................ 4

1. INTRODUCTION TO BUSINESS INTELLIGENCE ........................................................................................................... 4
1.1. Business Intelligence (BI) vs. Business Analytics (BA). ........................................................................ 4
1.2. Definition ............................................................................................................................................ 4
1.3. Business Intelligence architecture ...................................................................................................... 5
2. INTRODUCTION TO DATABASES ............................................................................................................................ 7
Text 1. Database systems: design, implementation, and management – Carlos Coronel, Steven Morris &
Peter Rob.......................................................................................................................................................... 7
2.1. Database systems ............................................................................................................................. 32
2.2. Relational databases ........................................................................................................................ 32
2.3. Trends in the database world ........................................................................................................... 33
3. READING: DATA WAREHOUSE DESIGN- MODERN PRINCIPLES AND METHODOLOGIES ................................................. 34

LECTURE 2: SQL & DATA WAREHOUSING ................................................................................................... 45

1. INTRODUCTION STRUCTURED QUERY LANGUAGE (SQL) ........................................................................................ 45
1.1. Data types ......................................................................................................................................... 45
1.2. Join types .......................................................................................................................................... 45
2. INTRODUCTION TO DATA WAREHOUSING............................................................................................................. 46
2.1. Why do we need a separate data warehouse? ................................................................................ 47
2.2. DW framework: components............................................................................................................ 47
2.3. DW framework: Architecture............................................................................................................ 50
2.4. Data warehouse architecture variants ............................................................................................. 51

LECTURE 3: OLAP BUSINESS DATABASES & BUSINESS DASHBOARDS ........................................................... 57

1. ETL (EXTRACTION, TRANSFORMATION, & LOAD) ................................................................................................. 57
1.1. Process steps ..................................................................................................................................... 57
1.2. Transformation ................................................................................................................................. 57
1.3. ETL tools ............................................................................................................................................ 59
2. OLAP BUSINESS DATABASES ............................................................................................................................. 60
2.1. Why OLAP? ....................................................................................................................................... 61
2.2. OLAP operators ................................................................................................................................. 62
2.3. Multi-dimentional modelling ............................................................................................................ 64
2.4. Central fact table .............................................................................................................................. 67
2.5. Dimension table ................................................................................................................................ 68
2.6. OLAP software vendors..................................................................................................................... 69
3. TECHNICAL OLAP ISSUES ................................................................................................................................. 70
3.1. Sparse fact table ............................................................................................................................... 70
3.2. History in the stars ............................................................................................................................ 71


1

, 4. BUSINESS DASHBOARDS ................................................................................................................................... 72
4.1. Two theoretical perspectives: ........................................................................................................... 72

LECTURE 4: DATA MINING INTRODUCTION ................................................................................................ 74

1. PYTHON REFRESHER ........................................................................................................................................ 74
2. DECISION MAKING WITH BIG DATA ..................................................................................................................... 75
3. DATA MINING METHODS ................................................................................................................................. 75
4. DATA ........................................................................................................................................................... 75
4.1. Data and types of variables .............................................................................................................. 76
4.2. Sources of data ................................................................................................................................. 77
5. DATA MINING PROCESS(ES)—OVERVIEW OF THE STEPS INVOLVED IN DATA MINING .................................................... 77
Step 1: Develop an understanding of the purpose of the data mining project ............................................. 77
Step 2: Obtain the dataset to be used in the analysis ................................................................................... 77
Step 3: Explore, clean, and preprocess the data ............................................................................................ 78
Step 4: Reduce the data dimension, if necessary........................................................................................... 78
Step 5: Determine the data mining task ........................................................................................................ 78
Step 6: Partition the data (for supervised tasks) ........................................................................................... 78
Step 7: Choose the data mining technique(s) ................................................................................................ 78
Step 8: Use algorithms to perform the task ................................................................................................... 78
Step 9: Interpret the results of the algorithms .............................................................................................. 78
Step 10: Deploy the model ............................................................................................................................. 79
5.1. SEMMA methodology ....................................................................................................................... 79
5.2. CRISP-DM .......................................................................................................................................... 79

LECTURE 5: REGRESSION MODELS ............................................................................................................. 81

1. DEFINITION: REGRESSION ANALYSIS .................................................................................................................... 82
2. LINEAR REGRESSION MODEL ............................................................................................................................ 82
3. VISUALIZATION............................................................................................................................................... 83
4. ORDINARY LEAST SQUARES (OLS) ..................................................................................................................... 83
5. MODEL USAGE AND POSSIBLE ISSUES .................................................................................................................. 84
5.1. Objectives for single/multiple regression ......................................................................................... 84
5.2. Issues................................................................................................................................................. 84

LECTURE 6: CLASSIFICATION...................................................................................................................... 85

1. WHAT IS CLASSIFICATION? ............................................................................................................................... 85
1.1. Classification vs. Clustering .............................................................................................................. 85
1.2. Classification process ........................................................................................................................ 85
1.3. Need for classification ...................................................................................................................... 86
1.4. Model induction and application ...................................................................................................... 86
1.5. Classification techniques .................................................................................................................. 87
2. NAÏVE BAYES FOR CLASSIFICATION ..................................................................................................................... 88
2.1. Naïve Bayes classifier........................................................................................................................ 88
2.2. Some concerns .................................................................................................................................. 90
2.3. Pros and cons .................................................................................................................................... 90

LECTURE 7: K NEAREST NEIGHBORS FOR CLASSIFICATION .......................................................................... 91

1. DETERMINING RECORD’S NEIGHBORS ................................................................................................................. 91
1.1. Euclidean Distance ............................................................................................................................ 91



2

, 1.2. Manhattan Distance ......................................................................................................................... 92
2. CHOOSING THE NUMBER OF NEIGHBORS, I.E., VALUE K .......................................................................................... 92
3. COMPUTING PREDICTION (FOR A NUMERICAL OUTCOME) ....................................................................................... 93

LECTURE 8: PERFORMANCE MEASURES ..................................................................................................... 95

1. EVALUATING PREDICTIVE PERFORMANCE (OF NUMERIC/CONTINUOUS PREDICTIONS) ................................................... 96
1.1. Prediction Accuracy measures .......................................................................................................... 96
1.2. Lift chart............................................................................................................................................ 97
2. JUDGING CLASSIFIER PERFORMANCE (CATEGORICAL VARIABLES EX. BIRDS) ................................................................ 98
2.1. Confusion matrix............................................................................................................................... 98
2.2. Accuracy (overall success rate) ......................................................................................................... 99
2.3. Receiver operating characteristic (ROC) ........................................................................................... 99
2.4. Cost Matrix (as response to the limitation of Accuracy) ................................................................ 100
2.5. Kappa statistic for multiclass prediction......................................................................................... 101
2.6. Precision and Recall ........................................................................................................................ 102
2.7. 𝑭𝟏-measure .................................................................................................................................... 103

LECTURE 9: DECISION TREES.................................................................................................................... 104

1. MAIN PROCESSING........................................................................................................................................ 104
1.1. Induction (with a Greedy Strategy)................................................................................................. 105
2. PROS AND CONS OF DECISION TREES ................................................................................................................. 109

LECTURE 10: ASSOCIATION RULES ........................................................................................................... 110

1. RULES ........................................................................................................................................................ 110
2. TWO-STAGE PROCESS.................................................................................................................................... 111
2.1. Generation of frequent itemsets → Apriory algorithm .................................................................. 111
2.2. Selecting the strong rules i.e., criteria for judging the strength of the rules.................................. 112
3. ALTERNATIVE DATA REPRESENTATION (TO SPEED UP EXECUTION) ........................................................................... 113

LECTURE 11: CLUSTERING ....................................................................................................................... 114

1. CLUSTER ANALYSIS ........................................................................................................................................ 114
1.1. Issues for clustering ........................................................................................................................ 114
2. REPRESENTATION & DISTANCE........................................................................................................................ 115
2.1. Distance .......................................................................................................................................... 115
3. TWO TYPES OF CLUSTERING ............................................................................................................................ 117
3.1. Hierarchical clustering .................................................................................................................... 117
3.2. Partitional Algorithms: k means ..................................................................................................... 120




3

, LECTURE 1: INTRODUCTION TO BI AND DATABASE SYSTEMS

1. INTRODUCTION TO BUSINESS INTELLIGENCE


Data Information Knowledge



Methods of BI:

1. Descriptive analytics: use data to understand past and present.
Retrospective
2. Diagnostic analytics: explain why something happened.

3. Predictive analytics: predict future behavior based on past
performance.
Prospective
4. Prescriptive analytics: make decisions or recommendations to
achieve the best performance.

Functions of BI: Marketing analytics, Sales analytics, HR analytics, Financial analytics, Supply chain
analytics, Accounting analytics ….



1.1. BUSINESS INTELLIGENCE (BI) VS. BUSINESS ANALYTICS (BA).

These terms are often fighting for dominance, distinguished by the following view:

- BI = data warehousing + descriptive analytics
- BA = predictive + prescriptive analytics

However, the prof thinks they are too similar to really be separated, as both are examples of a Decision
Support System (DSS).



1.2. DEFINITION

= Transforming data into meaningful information/knowledge to support business decision-
making. (general)
= BI is an umbrella term that combines the processes, technologies, and tools needed to
transform data into information, information into knowledge, and knowledge into plans that
drive profitable business action. (process view)
= BI is information and knowledge that enables business decision-making. (output view)




4
€9,49
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
clairevanroey Universiteit Antwerpen
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
119
Membre depuis
8 année
Nombre de followers
96
Documents
32
Dernière vente
11 mois de cela

3,1

13 revues

5
3
4
4
3
0
2
3
1
3

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions