Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4,6 TrustPilot
logo-home
Resume

Summary PSYCH1000 Chapter 5 lecture & textbook notes

Note
-
Vendu
-
Pages
5
Publié le
10-04-2021
Écrit en
2020/2021

Includes integrated information from chapter 5 of the textbook as well as corresponding content from lecture. One-stop-shop for your PSYCH1000 final!

Établissement
Cours









Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Livre connecté

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Livre entier ?
Non
Quels chapitres sont résumés ?
Chapter 5
Publié le
10 avril 2021
Nombre de pages
5
Écrit en
2020/2021
Type
Resume

Sujets

Aperçu du contenu

PSYCH1000: CHAPTER 5: SENSATION & PERCEPTION
Sensory Processes
• Sensation: the ways your sense organs receive/transmit info
• Perception: brain’s processing/interpretation of that info
• Psychophysics: study relation between physical stimuli and psychological responses
• Absolute threshold: lower limit of stimuli detectability (ex. how far away we detect light)
• Difference threshold: amt of change required for JND (just noticeable difference)
• Helps to determine relationship between stimuli + what is perceived
• Weber’s Law
• Size of difference threshold relative to physical intensity of test is constant (∆I/I =C)
• ∆I = difference between initial stimuli intensity and the intensity when JND reported
• I = initial stimuli intensity
• C = Weber’s Constant
• Ex. If stimuli is 50 db & you report JND at 55 db, (5/50 —> Weber’s constant is 1/10)
• ∴ at 100db, we can expect JND at (by back calculating ∆I)
• Smaller C value = more sensitive system
• Fechner’s Law (father of psychophysics)
• Sensation increases w/ the logarithm of intensity (doesn’t agree w/ Weber’s linear theory)
• S = k (logI)
• Steven’s Power Law
• S = k log IN
• This is the best one
• Subliminal stimuli: not consciously perceived
• Subliminal cuts: advertisers adding subliminal messaging to influence consumers
• Doesn’t actually impact consumer behaviour as far as we know
• However: priming does actually tend to influence people (even if it is not perceived)
• Minimum time for a neural response is faster than minimum time for perception
• Adaptation occurs in response to unchanging stimuli
• Senses are classified by energy to which they respond

Commonalities Between Sensory Systems
1. Accessory structures: channel info to more sensitive areas (eg, outer ear)
2. Transduction: receptors turn external info into neural info
3. Coding: (for intensity), eg frequency
4. Interaction: senses bleed into one another (eg. smell in tasting)

Sensory Systems: Vision
• Stimulus: electromagnetic energy / light waves
PARTS OF THE EYE
• Iris: contracts and changes opening of pupil (impacts how much light gets in)
• Cornea : clear protective cover, focuses image
• Lens: fine tunes (focuses either near or far distance)
• Vitreous humour: jelly in eyeball, keeps shape of ball, pressurizes inside of eye
• Retina: turns light into vision, has receptors on it
• Fovea: most sensitive part of retina
• Optic nerve: bundle of axons from cells in retina that exit eye
• Blind spot: where optic nerve leaves eye, no receptors —> no vision perceived
• Ganglion cells: big cells on retina where axons form optic nerve, output
• Bipolar cells: connected to both ganglion and receptors, collect and pass along info
• Receptor cells: light-sensitive, in retina, where transduction occurs
• Rods: brightness receptors

, • Cones: colour receptors
• Photopigments: proteins in receptor cells which convert light to nerve impulses via
chemical reactions

• Dark adaptation: gradual regeneration of depleted photopigments after bright illumination
• Spectral sensitivity: showing which cones are sensitive to which colours (wavelengths)
• Colour vision
• Trichromatic Theory
• Colour vision is based on activity of 3 types of receptors, each w/ a different peak
sensitivity (short, med, long wavelength) —> red, green, blue
• Balance of activity in S/M/L cones determines perception of colour
• Opponent-Process Theory
• Cone photoreceptors are linked to form 3 opposing colour pairs (blue/yellow, red/green,
black/white)
• Activity in one member of the pair inhibits activity in the other
• This explains why you can’t describe a colour as “bluish yellow” or “reddish green”
• When one member of the pair is “fatigued” by extended exposure, inhibition of the
other member lessens (can lead to this colour being perceived)
• Colour-deficient vision
• Dichromat: someone who has a deficiency in either red-green or yellow-blue systems
(absence of hue-sensitive photopigment in certain cones)
• Monochromat: someone who is only sensitive to black-white system (total colour
blindness)
• Visual info analyzed by feature detectors in primary visual cortex
• Stimulus elements reconstructed/interpreted in visual association cortex

How Do Rods & Cones Work?
• Horizontal cells between bipolar and receptors (inhibitory)
• Amacrine cells between ganglion and bipolar (inhibitory)
• Many more rods than cones
• Rods: operate at low light intensity (sensitive to brightness)
• Fovea does not contain any rods (if you’re looking right at something, less sensitive to light)
• Monochrome (no colour vision)
• Visual pigment called rhodopsin
• Cones: operates at higher intensity (less sensitive to light)
• Concentrated in fovea
• Full colour
• One of 3 photopigments: chlorolabe (Green), erythrolabe (Red), cyanolabe (Blue)
• Responsive to different wavelengths (colour)
• Duplex theory : 2 kinds of visual receptors
• Visual pigments react to light (break down in the presence of light and split into chemicals
which cause action potentials)
• Single cell recording: isolate a single retinal ganglion cell and attach a micro electrode and
record output
• find spot in visual field where ganglion cell is firing the most (thats the area thats served by
that ganglion cell) —> helps us plot a receptive field for a particular ganglion cell
• horizontal cells inhibit the ganglion cell (slow firing rate) right before it hits the hot spot
(areas of max/min response circles) & returns to base firing rate once leaves receptive field
• Lateral inhibition: as one receptor gets activated a lot, it activates horizontal inhibitors and
inhibits next door receptor from firing (helps to enhance / clean up image)
• That is how a ganglion cell’s receptive field is built

Sensory Systems: Audition
• Stimulus: sound waves
€3,10
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
dlbrenn

Document également disponible en groupe

Faites connaissance avec le vendeur

Seller avatar
dlbrenn Western University
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
3
Membre depuis
4 année
Nombre de followers
2
Documents
0
Dernière vente
1 mois de cela

0,0

0 revues

5
0
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions