Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Samenvatting I-chemische procesregeling (2212FTICPR)

Note
-
Vendu
1
Pages
45
Publié le
22-03-2021
Écrit en
2020/2021

Dit is een compacte, duidelijke samenvatting van het vak I-chemische procesregeling in het masterjaar. Hierin word alle te kennen theorie duidelijk uitgelegd in de woorden van de prof, en alle niet te kennen wiskundige vergelijkingen uit de cursus zijn eruit gelaten.

Montrer plus Lire moins











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Infos sur le Document

Publié le
22 mars 2021
Nombre de pages
45
Écrit en
2020/2021
Type
Resume

Aperçu du contenu

1



Samenvatting chemische
procesregeling
5. wiskundige hulpmiddelen en definities
Indelingen van systemen
1) Met slechts 1 uitgang : monovariabel systeem
a. SISO : single input- single output
b. MISO : multiple input- single output
2) Met meerdere uitgangen : multivariabel systeem = MIMO : multiple input- multiple output

Lineariseren
Je kan enkel laplacetransformaties nemen van lineaire differentiaalvergelijkingen:

Een lineaire vergelijking :



Indien de differentiaalvergelijking niet lineair is moet je hem lineariseren


( dxdf )
Dit gebeurt met de volgende formule : f l ( x )=f ( x 0 ) +
x=x 0
.( x−x 0)

Met :

- f(x) = de originele functie
- fL(x) = de gelineariseerde functie
- x0 = werkpunt waarrond wordt gelinealiseerd (de ingestelde waarde)
- f(x0) = de originele functie met x vervangen door x 0

Voor een lineair systeem geldt:




Met :

- pi en qi = constanten
- y(t) = uitgangsveranderlijke
- x(t) = ingangsveranderlijke
- n = de orde van de differentiaalvergelijking

, 2


afwijkingsveranderlijken
De differentiaalberekeningen van lineaire systemen kunnen makkelijker gemaakt worden door het
gebruik van afwijkingsveranderlijken: zA(t) = z(t) - zs

- met zA(t) = de afwijking
- z(t) = de veranderlijke (gemeten)
- zs = de ingestelde waarde (statische toestand)




Dus het invoeren van afwijkingsveranderlijken bij lineaire systemen die zich voor t<0 in de statische
toestand bevinden, biedt volgende voordelen:

- de natuur van de differentiaalvergelijking wordt niet gewijzigd. Eventuele constante termen,
die slechts een invloed hebben op de statische toestand vallen weg
- de beginvoorwaarde van afwijkingsveranderlijken is altijd nul
- laplacetransformaties van de afgeleiden van afwijkingsveranderlijken is heel eenvoudig
- In procesregeling ben je enkel geïnteresseerd in de afwijking

Ingang-uitgangmodellering
De transferfunctie H(s) = een vergelijking in het laplace domein die het verband geeft tussen de
ingang XA(s) en de uitgang YA(s)
A
Y (s)
H ( s )= A
X ( s)
- A : de afwijkingsveranderlijke
- (s) : lapacedomein

Met gekende transferfunctie en gekende storing X A(s) kunnen we de uitgang voorspellen.

- XA(s) = B/s
o Met B de stapfunctie storing (bv koelwater wordt ineens 10 graden warmer  B=10)

Probleem kan wiskundig zo makkelijk ontleden worden

De statische versterking K
= is de verhouding van de uiteindelijke verandering (t=ꚙ) van de uitgangsveranderlijke en de
ingangsveranderlijke van een proces na een stapfunctie aan de ingang.

- Is een eigenschap van het proces
- Zelfs zonder een sturing

Δy
K=
[ ]
Δx t =inf
=¿ ¿

Voor een bepaalde stapfunctie:

- Als K groot is zal de verandering aan de uitgang groot zijn = het proces is zeer gevoelig voor
storingen

, 3


- Als K klein is zal de verandering aan de uitgang klein zijn = het proces is weinig gevoelig voor
storingen

Voorbeeld 1 : een buffervat met constante warmteproductie




1) We vertrekken van een energiebalans

J
¿+GEPRODUCEERD=UIT + ACCUMULATIE
[ s
=W
]
- Constante warmteproductie dus Φ G , s=cte∈de tijd
- Geen steady state systeem dus accumulatie is niet 0 (d…/dt)

kg J kg J d 1 J

[ ]
s [ ]
.T i [ ° C ] .C p
kg . s
+ ΦG , s= ṁ
[ ]
s
.T [°C ].C p +
[ ] []
kg . s dt s
. T [ ° C ] m CSTR [ kg ] .C p
[ ]
kg . s

- CSTR reactor : T in reactor = T uitgaande stroom = T
 Kan ook massabalans [kg/s of mol/s]
2) Dan kijken of deze functie lineair is  ja

x. cte + cte = y.cte + y’.cte

3) Opstellen van de normaal vergelijking :
d
a. ṁ .T i (t).C p +Φ G , s=ṁ .T (t) .C p + .T ( t ) . mCSTR . C p
dt
b. ṁ .C p wegwerken
mCSTR d .T (t) Φ
c. . +T ( t )=T i ( t ) + G , s
ṁ dt ṁ. C p
d. We definiëren de volgende variabelen:
mCSTR
i. =τ=de gemiddelde verblijfstijd ∈de reactor [ s ]

ii. De factor voor T i ( t )( in dit geval 1) = K, de statische versterking
d . T (t ) ΦG ,s
e. τ . +T ( t )=K .T i (t ) +
dt ṁ . C p
4) Invoeren van afwijkingsveranderlijken : TA(t)= T(t) – Ts  TAi(t)= Ti(t) – Ti,s
A
d (T ( t ) +T s ) A Φ
a. τ . +T ( t ) +T s =K . (T A i ( t ) +T i , s )+ G , s
dt ṁ .C p

, 4


dTs
b. Afgeleide van een constante is 0 : =0
dt
d T A (t ) A A ΦG , s
c. τ . +T ( t ) +T s =K . (T i ( t ) +T i , s )+
dt ṁ .C p
5) Als we deze vergelijking (3.e) schrijven in de statische toestand:
dTs Φ
a. τ . + T s=K .T i , s+ G , s
dt ṁ .C p
dTs
b. Afgeleide van een constant getal is 0 :τ . =0
dt
ΦG ,s
c. T s=K . T i , s +
ṁ. C p
6) 4.c en 5.c combineren dan krijgen we:
d T A (t ) A A
a. τ . +T ( t ) =K .T i ( t )
dt
7) Laplace nemen
A A A
a. τ . d T ( s ) . s +T ( s )=K .T i ( s )
8) transferfunctie in het Laplacedomein opstellen :
A
T (s)
a. H ( s )=
T Ai( s )
K
b. H ( s )=
τ . s +1
i. Met K = 1
1
c. H ( s )=
τ . s +1
9) We willen nu de temperatuur aan de uitgang weten in het tijdsdomein : inverse Laplace van
YA(s) = H(s) . XA(s)
ΔT i
a. XA(s)=T Ai ( s )=
s
i. Met ΔTi = de stapfunctie aan de ingang
1 ΔTi
10) YA(s) ¿ T A ( s )= H(s) . XA(s) = .
τ . s+ 1 s
A A B
a. Splitsen in partieelbreuken : T ( s )= +
s τ . s+1
i. A = ΔTi
ii. B = -τ. ΔTi
ΔTi τ. ΔTi
b. T A ( s )= −
s τ . s+1
11) Via de laplacetransformaties :
−t
1
a. T A ( t ) =ΔT i−τ . Δ T i . .e τ
τ
−t
b. T A ( t ) =ΔT −Δ T .e τ
i i
−t
c. T A ( t ) =ΔT (1−e τ )
i
€10,49
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
woutdewachter Universiteit Antwerpen
Voir profil
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
21
Membre depuis
4 année
Nombre de followers
15
Documents
14
Dernière vente
5 mois de cela
Mijn samenvattingen

Hier vind je volledige samenvattingen over een groot deel van de theoretisch vakken van industrieel ingenieur chemie aan UA.

4,0

2 revues

5
0
4
2
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions