Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4,6 TrustPilot
logo-home
Examen

Time Series Final Exam Questions and Verified Answers

Note
-
Vendu
-
Pages
16
Grade
A+
Publié le
16-01-2026
Écrit en
2025/2026

Time Series Final Exam Questions and Verified Answers

Établissement
Time Series
Cours
Time Series










Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Time Series
Cours
Time Series

Infos sur le Document

Publié le
16 janvier 2026
Nombre de pages
16
Écrit en
2025/2026
Type
Examen
Contient
Questions et réponses

Sujets

Aperçu du contenu

Time Series Final Exam Questions and Verified
Answers
What is a Time Series? Correct Answer: A collection of data points corresponding
to temporal measurements of some quantitative variable

Ex: Hourly website traffic, daily rainfall, monthly sales, quarterly revenue, annual
crime rates

T/F: Arbitrarily swapping rows in a time series will fundamentally change the data
Correct Answer: True

Define Time Series Analysis Correct Answer: Typically refers to modeling the
relationship between the y and time

What does a time series model characterize the relationship between? Correct
Answer: Between a point in time and all the points before it

Define forecasting Correct Answer: Make predictions using a time series model

With forecasting, the further into the future we go, the {more/less} certain we are.
This {widens/narrows} our prediction intervals. Correct Answer: less certain

widen our intervals

At a very general level, we can think of Time Series Analysis and Forecasting as:
Correct Answer: Trying to understand the past to predict the future

Univariate vs Multivariate Time Series Models Correct Answer: Univariate:

-future values of Y are forecasted using ONLY knowledge of past values of Y

Multivariate:

,- Future values of Y are forecasted using past values of Y AND one or more other
predict variables

When could adding a predictor variable be helpful? Correct Answer: A predictor
variable could be helpful if its pattern with time looks similar or inverse to the OG
relationship you're looking at.

AKA if it's correlated with the response variable.

What are the three important features of a time series? Correct Answer: 1. Serial
Correlation

2. Trend

3. Seasonality

Define Serial Correlation.

How is it quantified? Correct Answer: Serial correlation: the phenomena that
observations closer together in time tend to be more similar than observations
farther apart in time

Quantified by the autocorrelation function

- with data with serial correlation, we would see a high autocorrelation for a small
lag, and a small autocorrelation for a large lag

Autocorrelation of lag x Correct Answer: cor(y_t, y_{t+x})

How can we visualize autocorrelation / serial correlation? Correct Answer: We can
visualize the extent of autocorrelation in a given time series using ACF plots

With serial correlation, the height of the line on the ACF plot will generally
decrease as lag increases.

Define Trend

, What can it generally be approximated with? Correct Answer: Trend: the general,
smoothed behavior of a time series

- looking past subtle variations

- "squint your eyes, what is the time series generally doing?"

Can generally be approximated with low order polynomials

Define Seasonality

What is its connection to autocorrelation? Correct Answer: Seasonality:
characteristic of a time series in which the data experiences regular and predictable
fluctuations according to some period

If a time series experiences seasonality with period s, then observations s time units
apart are similar to one another

- "very strong autocorrelation across some period s"

Three parts of the Time Series Decomposition Correct Answer: 1. Trend

2. Seasonality

3. Random Variation

Effective time series models handle both _____ and ______ by accounting for
____________. Correct Answer: handle both trend and seasonality by accounting
for various autocorrelation structures in the observed data

T/F: With the right model design, random variation is avoidable Correct Answer:
False

Random Variation is unavoidable and is the chief contributor to "model
uncertainty"
€12,16
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
Ivie Southern New Hampshire University
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
19
Membre depuis
9 mois
Nombre de followers
1
Documents
8234
Dernière vente
1 mois de cela

3,3

6 revues

5
2
4
1
3
1
2
1
1
1

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions