Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Examen

Full Solution Manual - Numerical Methods for Engineers, 7th Edition by Steven Chapra – Step-by-Step Solutions for All Chapters

Note
-
Vendu
-
Pages
475
Grade
A+
Publié le
02-01-2026
Écrit en
2025/2026

Master the mathematical techniques required for engineering excellence with this complete Solution Manual for Numerical Methods for Engineers, 7th Edition by Steven Chapra. This resource provides detailed, step-by-step solutions to complex computational problems, helping you bridge the gap between theoretical math and practical engineering applications. What is Included: • Comprehensive Chapter Coverage: Solutions spanning the entire curriculum, including Curve Fitting (Chapters 18–20), Numerical Integration and Differentiation (Chapters 21–24), Ordinary Differential Equations (Chapters 25–28), and Partial Differential Equations (Chapters 29–32). • Detailed Algorithmic Solutions: Step-by-step breakdowns of essential methods such as Newton’s divided-difference interpolating polynomials, Lagrange polynomials, and Cubic Splines. • Advanced Integration Techniques: Clear guidance on using the Trapezoidal rule, Simpson’s 1/3 and 3/8 rules, Gauss Quadrature, and Romberg Integration. • ODE & PDE Mastery: Expert solutions for Initial-Value Problems using Euler’s method, Heun’s method, and 4th-order Runge-Kutta (RK4), as well as Steady-State PDE solutions via Liebmann’s method and Crank-Nicolson. • Programming Implementations: Includes logic and code snippets for implementing numerical methods in VBA/Excel and MATLAB, covering Discrete Fourier Transforms (DFT) and Fast Fourier Transforms (FFT). • Specialized Engineering Topics: Solutions for the Finite Element Method, Thomas Algorithm for tridiagonal systems, and Power Methods for eigenvalues. This manual is the ultimate companion for engineering students and professionals looking to ace their numerical analysis courses and implement stable, accurate computational models.

Montrer plus Lire moins
Établissement
Cours











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Cours

Infos sur le Document

Publié le
2 janvier 2026
Nombre de pages
475
Écrit en
2025/2026
Type
Examen
Contient
Questions et réponses

Sujets

Aperçu du contenu

1


CHAPTERV18
18.1 (a)
1.0791812V−V0.90309V
fV(10)V=V0.90309V+V (10V−V8)V=V0.991136
1
12V−V8
1−V0.991136V
V =V 100%V=V0.886%
t
1

(b)
1.0413927V−V0.9542425V
fV(10)V=V0.9542425V+V (10V−V9)V=V0.997818
1
11−V9
1−V0.997818V
V =V 100%V=V0.218%
t
1

18.2 First,VorderVtheVpoints

x0V=V9 f(x0)V=V0.9542425
x1V=V11V f(x1)V=V1.0413927
x2V=V8 f(x2)V=V0.9030900

ApplyingVEq.V(18.4)

b0V=V0.9542425

EquationV(18.5)Vyields

1.0413927V−V0.9542425V
b1V =V =V0.0435751
11−V9

EquationV(18.6)Vgives

0.9030900V−1.0413927V
−V0.0435751
8V−11 0.0461009V−V0.0435751V
b2V =V V
=V =V−0.0025258
8V−V9 8V−V9

SubstitutingVtheseVvaluesVintoVEq.V(18.3)VyieldsVtheVquadraticVformula

f2V(x)V=V0.9542425V+V0.0435751(xV−V9)V−V0.0025258(xV−V9)(xV−11)

whichVcanVbeVevaluatedVatVxV=V10Vfor

f2V(10)V=V0.9542425V+V0.0435751(10V−V9)V−V0.0025258(10V−V9)(10V−11)V=V1.0003434

18.3 First,VorderVtheVpoints

x0V=V9 f(x0)V=V0.9542425
x1V=V11V f(x1)V=V1.0413927
x2V=V8 f(x2)V=V0.9030900
x3V=V12V f(x3)V=V1.0791812

TheVfirstVdividedVdifferencesVcanVbeVcomputedVas

PROPRIETARYVMATERIAL.V ©VTheVMcGraw-
HillVCompanies,VInc.V AllVrightsVreserved.V NoVpartVofVthisVManualVmayVbeVdisplayed,VreproducedVorVdistri
butedVinVanyVformVorVbyVanyVmeans,VwithoutVtheVpriorVwrittenVpermissionVofVtheVpublisher,VorVusedVbey
ondVtheVlimitedVdistributionVtoVteachersVandVeducatorsVpermittedVbyVMcGraw-
HillVforVtheirVindividualVcourseVpreparation.V IfVyouVareVaVstudentVusingVthisVManual,VyouVareVusingVitVwi
thoutVpermission.

, 2



1.0413927V−V0.9542425V
fV[xV ,VxV ]V=V =V0.0435751
1
VV0 11−V9
0.9030900V−1.0413927V
fV[xV ,VxV ]V=V =V0.0461009
2
VV1 8V−V11
1.0791812V−V0.9030900V
fV[xV ,VxV ]V=V =V0.0440228
3
VV2 12V−V8

TheVsecondVdividedVdifferencesVare
0.0461009V−V0.0435751V
fV[xV ,VxV ,VxV ]V=V =V−0.0025258
2V V 1
VV0 8V−V9
0.0440228V−V0.0461009V
fV[xV ,VxV ,VxV ]V=V =V−0.0020781
3V V 2
VV1 12V−V11

TheVthirdVdividedVdifferenceVis

−0.0020781−V(−0.0025258)V
fV[x3VV,VVxV2V,VVxV ,VxV ]V=V =V0.00014924
1V V 0 12V−V9

SubstitutingVtheVappropriateVvaluesVintoVEq.V(18.7)Vgives

f3V(x)V=V0.9542425V+V0.0435751(xV−V9)V−V0.0025258(xV−V9)(xV−11)
+V0.00014924(xV−V9)(xV−11)(xV−V8)

whichVcanVbeVevaluatedVatVxV=V10Vfor

f3V(x)V=V0.9542425V+V0.0435751(10V−V9)V−V0.0025258(10V−V9)(10V−11)
+V0.00014924(10V−V9)(10V−11)(10V−V8)V=V1.0000449

18.4
18.1 V(a):
x0V=V8 f(x0)V=V0.9030900
x1V=V12 f(x1)V=V1.0791812
10V−12V 10V−V8V
fV (10)V=V 0.9030900V+V 1.0791812V=V0.991136
1
8V−12 12V−V8

18.1 (b):
x0V=V9 f(x0)V=V0.9542425
x1V=V11 f(x1)V=V1.0413927
10V−11V 10V−V9V
fV (10)V=V 0.9542425V+V 1.0413927V=V0.997818
1
9V−11 11−V9

18.2 :
x0V=V8 f(x0)V=V0.9030900
x1V=V9 f(x1)V=V0.9542425
x2V=V11V f(x2)V=V1.0413927

PROPRIETARYVMATERIAL.V ©VTheVMcGraw-
HillVCompanies,VInc.V AllVrightsVreserved.V NoVpartVofVthisVManualVmayVbeVdisplayed,VreproducedVorVdistri
butedVinVanyVformVorVbyVanyVmeans,VwithoutVtheVpriorVwrittenVpermissionVofVtheVpublisher,VorVusedVbey
ondVtheVlimitedVdistributionVtoVteachersVandVeducatorsVpermittedVbyVMcGraw-
HillVforVtheirVindividualVcourseVpreparation.V IfVyouVareVaVstudentVusingVthisVManual,VyouVareVusingVitVwi
thoutVpermission.

, 3



(10V−V9)(10V−11)V (10V−V8)(10V−11)V
fV2 (10)V=V 0.9030900V+V 0.9542425
(8V−V9)(8V−11) (9V−V8)(9V−11)
(10V−V8)(10V−V9)V
+V 1.0413927V=V1.0003434
(11−V8)(11−V9)
18.3 :
x0V=V8 f(x0)V=V0.9030900
x1V=V9 f(x1)V=V0.9542425
x2V=V11V f(x2)V=V1.0413927
x3V=V12V f(x3)V=V1.0791812

(10V−V9)(10V−11)(10V−12)V (10V−V8)(10V−11)(10V−12)V
fV3 (10)V=V 0.9030900V+V 0.9542425
(8V−V9)(8V−11)(8V−12) (9V−V8)(9V−11)(9V−12)
(10V−V8)(10V−V9)(10V−12)V (10V−V8)(10V−V9)(10V−11)V
+V 1.0413927V+V 1.0791812V=V1.0000449
(11−V8)(11−V9)(11−12) (12V−V8)(12V−V9)(12V−11)

18.5 First,VorderVtheVpointsVsoVthatVtheyVareVasVcloseVtoVandVasVcenteredVaboutVtheVunknownVasVpossible

x0V=V2.5V f(x0)V=V14
x1V=V3.2V f(x1)V=V15
x2V=V2 f(x2)V=V8
x3V=V4 f(x3)V=V8
x4V=V1.6V f(x4)V=V2

Next,VtheVdividedVdifferencesVcanVbeVcomputedVandVdisplayedVinVtheVformatVofVFig.V18.5,

i xi f(xi) f[xi+1,xi] f[xi+2,xi+1,xi] f[xi+3,xi+2,xi+1,xi] f[xi+4,xi+3,xi+2,xi+1,xi]
0 2.5 14 1.428571 -8.809524 1.011905 1.847718
1 3.2 15 5.833333 -7.291667 -0.651042
2 2 8 0 -6.25
3 4 8 2.5
4 1.6 2

TheVfirstVthroughVthird-orderVinterpolationsVcanVthenVbeVimplementedVas

f1(2.8)V=V14V+1.428571(2.8V−V2.5)V=V14.428571
f2V(2.8)V=V14V+1.428571(2.8V−V2.5)V−V8.809524(2.8V−V2.5)(2.8V−V3.2)V=V15.485714
f3V(2.8)V=V14V+1.428571(2.8V−V2.5)V−V8.809524(2.8V−V2.5)(2.8V−V3.2)
+V1.011905(2.8V−V2.5)(2.8V−V3.2)(2.8V−V2.)V=V15.388571

TheVerrorVestimatesVforVtheVfirstVandVsecond-orderVpredictionsVcanVbeVcomputedVwithVEq.V18.19Vas

R1V=V15.485714V−14.428571V=V1.057143
R2V =V15.388571−15.485714V=V−0.097143

TheVerrorVforVtheVthird-orderVpredictionVcanVbeVcomputedVwithVEq.V18.18Vas

R3V =V1.847718(2.8V−V2.5)(2.8V−V3.2)(2.8V−V2)(2.8V−V4)V=V0.212857

18.6 First,VorderVtheVpointsVsoVthatVtheyVareVasVcloseVtoVandVasVcenteredVaboutVtheVunknownVasVpossible


PROPRIETARYVMATERIAL.V ©VTheVMcGraw-
HillVCompanies,VInc.V AllVrightsVreserved.V NoVpartVofVthisVManualVmayVbeVdisplayed,VreproducedVorVdistri
butedVinVanyVformVorVbyVanyVmeans,VwithoutVtheVpriorVwrittenVpermissionVofVtheVpublisher,VorVusedVbey
ondVtheVlimitedVdistributionVtoVteachersVandVeducatorsVpermittedVbyVMcGraw-
HillVforVtheirVindividualVcourseVpreparation.V IfVyouVareVaVstudentVusingVthisVManual,VyouVareVusingVitVwi
thoutVpermission.

, 4



x0V=V3 f(x0)V=V19
x1V=V5 f(x1)V=V99
x2V=V2 f(x2)V=V6
x3V=V7 f(x3)V=V291
x4V=V1 f(x4)V=V3

Next,VtheVdividedVdifferencesVcanVbeVcomputedVandVdisplayedVinVtheVformatVofVFig.V18.5,

i xi f(xi) f[xi+1,xi] f[xi+2,xi+1,xi] f[xi+3,xi+2,xi+1,xi] f[xi+4,xi+3,xi+2,xi+1,xi]
0 3 19 40 9 1 0
1 5 99 31 13 1
2 2 6 57 9
3 7 291 48
4 1 3

TheVfirstVthroughVfourth-orderVinterpolationsVcanVthenVbeVimplementedVas

f1(4)V=V19V+V40(4V−V3)V=V59
f2V(4)V=V59V+V9(4V−V3)(4V−V5)V=V50
f3V(4)V=V50V +1(4V−V3)(4V−V5)(4V−V2)V=V48
f4V(4)V=V48V+V0(4V−V3)(4V−V5)(4V−V2)(4V−V7)V=V48

ClearlyVthisVdataVwasVgeneratedVwithVaVcubicVpolynomialVsinceVtheVdifferenceVbetweenVthe
V4thVandVtheV3rd-orderVversionsVisVzero.

18.7
FirstVorder:
x0V=V3 f(x0)V=V19
x1V=V5 f(x1)V=V99
4V−V5 4V−V3V
fV (10)V=V 19V+V 99V=V59
1
3V−V5 5V−V3

SecondVorder:
x0V=V3 f(x0)V=V19
x1V=V5 f(x1)V=V99
x2V=V2 f(x2)V=V6
(4V−V5)(4V−V2)V (4V−V3)(4V−V2)V (4V−V3)(4V−V5)V
fV2 (10)V=V 19V+V 99V +V 6V=V50
(3V−V5)(3V−V2) (5V−V3)(5V−V2) (2V−V3)(2V−V5)

ThirdVorder:
x0V=V3 f(x0)V=V19
x1V=V5 f(x1)V=V99
x2V=V2 f(x2)V=V6
x3V=V7 f(x3)V=V291
(4V−V5)(4V−V2)(4V−V7)V (4V−V3)(4V−V2)(4V−V7)V
fV (10)V=V 19V+V 99
3
(3V−V5)(3V−V2)(3V−V7) (5V−V3)(5V−V2)(5V−V7)
(4V−V3)(4V−V5)(4V−V7)V (4V−V3)(4V−V5)(4V−V2)V
+V 6V+V 291V=V48
(2V−V3)(2V−V5)(2V−V7) (7V−V3)(7V−V5)(7V−V2)




PROPRIETARYVMATERIAL.V ©VTheVMcGraw-
HillVCompanies,VInc.V AllVrightsVreserved.V NoVpartVofVthisVManualVmayVbeVdisplayed,VreproducedVorVdistri
butedVinVanyVformVorVbyVanyVmeans,VwithoutVtheVpriorVwrittenVpermissionVofVtheVpublisher,VorVusedVbey
ondVtheVlimitedVdistributionVtoVteachersVandVeducatorsVpermittedVbyVMcGraw-
HillVforVtheirVindividualVcourseVpreparation.V IfVyouVareVaVstudentVusingVthisVManual,VyouVareVusingVitVwi
thoutVpermission.
€18,09
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
MuthiiKelvin

Document également disponible en groupe

Faites connaissance avec le vendeur

Seller avatar
MuthiiKelvin Teachme2-tutor
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
Nouveau sur Stuvia
Membre depuis
3 semaines
Nombre de followers
0
Documents
204
Dernière vente
-
TEST BANKS AND ALL KINDS OF EXAMS SOLUTIONS TESTBANKS, SOLUTION MANUALS & ALL EXAMS SHOP!!!!

Welcome to your ultimate academic resource center! We provide an extensive collection of verified test banks, solution manuals, and practice exam materials for a wide range of courses and textbooks. Our resources are designed to be powerful study aids to help you: Master complex concepts through step-by-step solutions. Test your knowledge and identify key areas for review. Prepare with confidence using practice questions that mirror exam formats. Think of our materials as your personal study partner—giving you the tools to practice effectively, understand deeply, and walk into every exam fully prepared. Browse our catalog to find the perfect resource for your course!

Lire la suite Lire moins
0,0

0 revues

5
0
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions