100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

College Algebra Final Exam questions with appropriate answers

Puntuación
-
Vendido
-
Páginas
5
Grado
A+
Subido en
10-08-2025
Escrito en
2025/2026

Remainder Theorem - answersIf polynomial p(x) of degree n>1 is divided by (x-a) where a is a constant, then the remainder is p(a) Find minima or maxima - answersfind -b/2a and than plug back in to equation What strategies can you use to find all the zeros of a polynomial? - answerssynthetic division, graphing, factoring Percent Profit Formula - answersPercentage Profit = ((selling price-cost price)/(cost price))*100 Polynomials - answersMonomial- 5x2 Binomial- 2x2+5x Trinomial- 5x2+3x+6 The Rational Roots Test p/q - answersThis relationship is always true: If a polynomial has rational roots, then those roots will be fractions of the form (plus-or-minus) (factor of the constant term) / (factor of the leading coefficient). However, not all fractions of this form are necessarily zeroes of the polynomial. Indeed, it may happen that none of the fractions so formed is actually a zero of the polynomial. Find all possible rational x-intercepts of x4 + 2x3 - 7x2 - 8x + 12. The constant term is 12, with factors of 1, 2, 3, 4, 6, and 12. The leading coefficient in this case is just 1, which makes my work a lot simpler. The Rational Roots Test says that the possible zeroes are at: Copyright © Elizabeth Stapel All Rights Reserved ± 1, 2, 3, 4, 6, 12 = -12, -6, -4, -3, -2, -1, 1, 2, 3, 4, 6, 12 Graphs of Polynomials: Predicting End Behavior of a Function - answersThe end behavior of a polynomial function is the behavior of the graph of f(x) as x approaches positive infinity or negative infinity. The degree and the leading coefficient of a polynomial function determine the end behavior of the graph. The leading coefficient is significant compared to the other coefficients in the function for the very large or very small numbers. So, the sign of the leading coefficient is sufficient to predict the end behavior of the function. Graphs of Polynomials: Predicting End Behavior of a Function (2) - answersPolynomial End Behavior: 1. If the degree n of a polynomial is even, then the arms of the graph are either both up or both down. 2. If the degree n is odd, then one arm of the graph is up and one is down. 3. If the leading coefficient an is positive, the right arm of the graph is up. 4. If the leading coefficient an is negative, the right arm of the graph is down.

Mostrar más Leer menos
Institución
College Algebra
Grado
College Algebra









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
College Algebra
Grado
College Algebra

Información del documento

Subido en
10 de agosto de 2025
Número de páginas
5
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

College Algebra Final Exam questions
with appropriate answers

Remainder Theorem - answersIf polynomial p(x) of degree n>1 is divided by (x-a) where
a is a constant, then the remainder is p(a)

Find minima or maxima - answersfind -b/2a and than plug back in to equation

What strategies can you use to find all the zeros of a polynomial? - answerssynthetic
division, graphing, factoring

Percent Profit Formula - answersPercentage Profit = ((selling price-cost price)/(cost
price))*100

Polynomials - answersMonomial- 5x2
Binomial- 2x2+5x
Trinomial- 5x2+3x+6

The Rational Roots Test p/q - answersThis relationship is always true: If a polynomial
has rational roots, then those roots will be fractions of the form (plus-or-minus) (factor of
the constant term) / (factor of the leading coefficient). However, not all fractions of this
form are necessarily zeroes of the polynomial. Indeed, it may happen that none of the
fractions so formed is actually a zero of the polynomial.

Find all possible rational x-intercepts of x4 + 2x3 - 7x2 - 8x + 12.

The constant term is 12, with factors of 1, 2, 3, 4, 6, and 12. The leading coefficient in
this case is just 1, which makes my work a lot simpler. The Rational Roots Test says
that the possible zeroes are at: Copyright © Elizabeth Stapel 2002-2011 All Rights
Reserved

± 1, 2, 3, 4, 6, 12

= -12, -6, -4, -3, -2, -1, 1, 2, 3, 4, 6, 12

Graphs of Polynomials: Predicting End Behavior of a Function - answersThe end
behavior of a polynomial function is the behavior of the graph of f(x) as x approaches
positive infinity or negative infinity.

The degree and the leading coefficient of a polynomial function determine the end
behavior of the graph.

, The leading coefficient is significant compared to the other coefficients in the function
for the very large or very small numbers. So, the sign of the leading coefficient is
sufficient to predict the end behavior of the function.

Graphs of Polynomials: Predicting End Behavior of a Function (2) - answersPolynomial
End Behavior:
1. If the degree n of a polynomial is even, then the arms of the graph are either both up
or both down.
2. If the degree n is odd, then one arm of the graph is up and one is down.
3. If the leading coefficient an is positive, the right arm of the graph is up.
4. If the leading coefficient an is negative, the right arm of the graph is down.

Graphs of Polynomials: Predicting End Behavior of a Function (3) - answersTo predict
the end-behavior of a polynomial function, first check whether the function is odd-
degree or even-degree function and whether the leading coefficient is positive or
negative.

Graphs of Polynomials: Turning Points - answersTurning Points

A Turning Point is an x-value where a local maximum or local minimum happens:

How many turning points does a polynomial have? - answersNever more than the
Degree minus 1

How do you determine the degree of a polynomial? - answersThe Degree of a
Polynomial with one variable is the largest exponent of that variable.

How do the graphs of polynomials behave? - answersGraphs will be continuous and
smooth
Even exponents behave the same: above (or equal to) 0; go through (0,0), (1,1) and (-
1,1); larger values of n flatten out near 0, and rise more sharply.

Odd exponents behave the same: go from negative x and y to positive x and y; go
through (0,0), (1,1) and (-1,-1); larger values of n flatten out near 0, and fall/rise more
sharply
Factors:
Larger values squash the curve (inwards to y-axis)
Smaller values expand it (away from y-axis)
And negative values flip it upside down
Turning points: there will be "Degree-1" or less.
End Behavior: use the term with the largest exponent

Hooke's Law - answersThe formula for Hooke's Law is "F = kd", where "F" is the force
and "d" is the distance. (Note that, in physics, "weight" is a force. These Hooke's Law
problems are often stated in terms of weight, and the weight is the force.)
$15.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
DESTINYGRACE Harvard university
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
13
Miembro desde
2 año
Número de seguidores
5
Documentos
2124
Última venta
3 semanas hace
TESTBANK,AQA AND ALLSTUDY MATERIALS

IM MY SHOP YOU WILL FIND DOCUMENTS ,PACKAGE DEELS AND ALLEXAMS BY DESINYGRACE

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes