First Course in Abstract Algebra A
mn mn mn mn mn mn
8th Edition by John B. Fraleigh
mn mn m n mn mn mn mn mn mn
m n All Chapters Full Complete
m n mn mn
, CONTENTS
1. Sets and Relations
mn mn 1
I. Groups and Subgroups m n m n
2. Introduction and Examples 4 mn mn
3. Binary Operations 7
m n
4. Isomorphic Binary Structures 9 m n m n
5. Groups 13
6. Subgroups 17
7. Cyclic Groups 21
mn m n
8. Generators and Cayley Digraphs 24 mn mn mn
II. Permutations, Cosets, and Direct Products mn mn mn mn
9. Groups of Permutations 26
mn mn
10. Orbits, Cycles, and the Alternating Groups mn mn mn mn mn
30
11. Cosets and the Theorem of Lagrange 34
mn mn mn mn mn
12. Direct Products and Finitely Generated Abelian Groups 37
m n m n m n m n m n m n
13. Plane Isometries 42
m n
III. Homomorphisms and Factor Groups m n m n m n
14. Homomorphisms 44
15. Factor Groups 49
mn
16. Factor-Group Computations and Simple Groups 53 m n m n m n m n
17. Group Action on a Set 58
mn mn mn mn
18. Applications of G-Sets to Counting 61 mn mn mn mn
IV. Rings and Fields m n m n
19. Rings and Fields 63
mn mn
20. Integral Domains 68 mn
21. Fermat’s and Euler’s Theorems 72
m n m n m n
22. The Field of Quotients of an Integral Domain 74
m n m n m n m n m n m n m n
23. Rings of Polynomials 76
m n m n
24. Factorization of Polynomials over a Field 79 mn mn mn mn mn
25. Noncommutative Examples 85 mn
26. Ordered Rings and Fields 87
m n m n m n
V. Ideals and Factor Rings m n m n m n
27. Homomorphisms and Factor Rings mn mn mn 89
28. Prime and Maximal Ideals 94
mn mn mn
,29. Gröbner Bases for Ideals
mn mn mn 99
, VI. Extension Fields m n
30. Introduction to Extension Fields mn mn mn 103
31. Vector Spaces 107m n
32. Algebraic Extensions 111 m n
33. Geometric Constructions 115 mn
34. Finite Fields 116
mn
VII. Advanced Group Theory mn mn
35. Isomorphism Theorems 117 mn
36. Series of Groups 119
mn mn
37. Sylow Theorems 122
mn
38. Applications of the Sylow Theory 124 m n m n m n m n
39. Free Abelian Groups 128
m n m n
40. Free Groups 130
mn
41. Group Presentations 133
mn
VIII. Groups in Topology m n m n
42. Simplicial Complexes and Homology Groups 136
mn m n m n mn
43. Computations of Homology Groups 138 mn mn mn
44. More Homology Computations and Applications 140
mn mn mn mn
45. Homological Algebra 144 mn
IX. Factorization
46. Unique Factorization Domains 148
mn m n
47. Euclidean Domains 151 m n
48. Gaussian Integers and Multiplicative Norms 154
m n m n m n m n
X. Automorphisms and Galois Theory m n m n m n
49. Automorphisms of Fields 159 mn mn
50. The Isomorphism Extension Theorem 164
m n m n m n
51. Splitting Fields 165 mn
52. Separable Extensions 167 mn
53. Totally Inseparable Extensions 171
mn mn
54. Galois Theory 173
m n
55. Illustrations of Galois Theory 176 mn mn mn
56. Cyclotomic Extensions 183 m
n
57. Insolvability of the Quintic 185 mn mn mn
APPENDIX Matrix Algebramn m n mn m n 187
iv