First Course in Abstract Algebra A
8th Edition by John B. Fraleigh
All Chapters Full Complete
, CONTENTS
1. Sets and Relations
FG FG 1
I. Groups and Subgroups F G F G
2. Introduction and Examples 4 F G F G
3. Binary Operations 7
F G
4. Isomorphic Binary Structures 9 F G F G
5. Groups 13
6. Subgroups 17
7. Cyclic Groups 21
FGF G
8. Generators and Cayley Digraphs 24 F G F G F G
II. Permutations, Cosets, and Direct Products FG FG FG FG
9. Groups of Permutations 26 FG FG
10. Orbits, Cycles, and the Alternating Groups FG FG FG FG FG
30
11. Cosets and the Theorem of Lagrange
FG 34 FG FG FG FG
12. Direct Products and Finitely Generated Abelian Groups 37
F G F G F G F G F G F G
13. Plane Isometries 42
F G
III. Homomorphisms and Factor Groups F G F G F G
14. Homomorphisms 44
15. Factor Groups 49F G
16. Factor-Group Computations and Simple Groups F G F G F G F G 53
17. Group Action on a Set 58
FG FG FG FG
18. Applications of G-Sets to Counting 61 FG FG FG FG
IV. Rings and Fields F G F G
19. Rings and Fields 63
FG FG
20. Integral Domains 68 F G
21. Fermat’s and Euler’s Theorems 72 F G F G F G
22. The Field of Quotients of an Integral Domain 74
F G F G F G F G F G F G F G
23. Rings of Polynomials 76
F G F G
24. Factorization of Polynomials over a Field 79 FG FG FG FG FG
25. Noncommutative Examples 85 FG
26. Ordered Rings and Fields 87 F G F G F G
V. Ideals and Factor Rings F G F G F G
27. Homomorphisms and Factor Rings FG FG FG 89
28. Prime and Maximal Ideals
FG 94 FG FG
,29. Gröbner Bases for Ideals
FG FG FG 99
, VI. Extension Fields F G
30. Introduction to Extension Fields FG FG FG 103
31. Vector Spaces 107 F G
32. Algebraic Extensions 111 F G
33. Geometric Constructions 115 FG
34. Finite Fields 116
F G
VII. Advanced Group Theory FG FG
35. IsomorphismTheorems 117 FG
36. Series of Groups 119FG FG
37. Sylow Theorems 122
FG
38. Applications of the Sylow Theory F G F G F G F G 124
39. Free Abelian Groups 128
F G F G
40. Free Groups 130
FG
41. Group Presentations 133
F G
VIII. Groups in Topology F G F G
42. Simplicial Complexes and Homology Groups 136
F G F G F G F G
43. Computations of Homology Groups 138 FG FG FG
44. More Homology Computations and Applications
FG 140 FG FG FG
45. Homological Algebra 144 FG
IX. Factorization
46. Unique Factorization Domains 148F G F G
47. Euclidean Domains 151 F G
48. Gaussian Integers and Multiplicative Norms F G F G F G F G 154
X. Automorphisms and Galois Theory F G F G F G
49. Automorphisms of Fields 159 FG FG
50. The Isomorphism Extension Theorem
F G F G F G 164
51. Splitting Fields 165 F G
52. Separable Extensions 167 FG
53. Totally Inseparable Extensions
FG 171 FG
54. Galois Theory 173 F G
55. Illustrations of Galois Theory 176 FG FG FG
56. CyclotomicExtensions 183 FG
57. Insolvability of the Quintic 185 FG F G F G
APPENDIX Matrix Algebra FGF G F GF G 187
iv