100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

COS1501 Assignment 3 (DETAILED ANSWERS) 2024 - DISTINCTION GUARANTEED

Puntuación
4.0
(1)
Vendido
8
Páginas
34
Grado
A+
Subido en
17-07-2024
Escrito en
2023/2024

COS1501 Assignment 3 (DETAILED ANSWERS) 2024 - DISTINCTION GUARANTEED - DISTINCTION GUARANTEED - DISTINCTION GUARANTEED Answers, guidelines, workings and references .... Question 1 Complete Marked out of 2.00 Question 2 Complete Marked out of 2.00 QUIZ Suppose U = {1, 2, 3, 4, 5, a, b, c} is a universal set with the subset A = {a, b, c, 1, 2, 3, 4}. Which one of the following relations on A is NOT functional? a. {(1, 3), (b, 3), (1, 4), (b, 2), (c, 2)} b. {(a, c), (b, c), (c, b), (1, 3), (2, 3), (3, a)} c. {(a, a), (c, c), (2, 2), (3, 3), (4, 4)} d. {(a, c), (b, c), (1, 3), (3, 3)} Suppose U = {1, 2, 3, 4, 5, a, b, c} is a universal set with the subset A = {a, b, c, 1, 2, 3, 4}. Which one of the following alternatives represents a surjective function from U to A? a. {(1, 4), (2, b), (3, 3), (4, 3), (5, a), (a, c), (b, 1), (c, b)} b. {(a, 1), (b, 2), (c, a), (1, 4), (2, b), (3, 3), (4, c)} c. {(1, a), (2, c), (3, b), (4, 1), (a, c), (b, 2), (c, 3)} d. {(1, a), (2, b), (3, 4), (4, 3), (5, c), (a, a), (b, 1), (c, 2)} Question 3 Complete Marked out of 2.00 Question 4 Complete Marked out of 2.00 Question 5 Complete Marked out of 2.00 Let G and L be relations on A = {1, 2, 3, 4} with G = {(1, 2), (2, 3), (4, 3)} and L = {(2, 2), (1, 3), (3, 4)}. Which one of the following alternatives represents the relation L ○ G = G; L? a. {(2, 3), (3, 3)} b. {(1, 2), (2, 4), (4, 4)} c. {(1, 2), (2, 1), (3, 3), (4, 4)} d. {(2, 4), (4, 4)} Let g be a function from Z (the set of positive integers) to Q (the set of rational numbers) defi ned by (x, y) ∈ g iff y = (g ⊆ Z x Q) and let f be a function on Z defi ned by (x, y) ∈ f iff y = 5x + 2x – 3 (f ⊆ Z x Z ). Consider the function f on Z . For which values of x is it the case that 5x + 2x – 3 > 0? Hint: Solve 5x + 2x – 3 > 0 and keep in mind that x ∈ Z . a. x < 5, x ∈ Z b. < x <1, x ∈ Z c. x ≥ 1, x ∈ Z d. x < 1, x ∈ Z + 4x − 3/7 + + 2 + + + 2 2 + + 3/5 + + + Let g be a function from Z (the set of positive integers) to Q (the set of rational numbers) defi ned by (x, y) ∈ g iff y = (g ⊆ Z x Q) and let f be a function on Z defi ned by (x, y) ∈ f iff y = 5x + 2x – 3 (f ⊆ Z x Z ). Which one of the following is an ordered pair belonging to f? a. (–1, 0) b. (2, 21) c. (1, 5) d. (3, 44) + 4x − 3/7 + + 2 + + Question 6 Complete Marked out of 2.00 Question 7 Complete Marked out of 2.00 Question 8 Complete Marked out of 2.00 Let g be a function from Z (the set of positive integers) to Q (the set of rational numbers) defi ned by (x, y) ∈ g iff y = (g ⊆ Z x Q) and let f be a function on Z defi ned by (x, y) ∈ f iff y = 5x + 2x – 3 (f ⊆ Z x Z ). Which one of the following alternatives represents the image of x under g ○ f (ie g ○ f(x)))? a. 20x + 8x – 12 b. 80x + 4 x – c. 20x + 8x + 3 d. 80x + 4 x – 3 + 4x − 3/7 + + 2 + + 2 3/7 2 4/7 180/49 2 3/7 2 4/7 Let g be a function from Z (the set of positive integers) to Q (the set of rational numbers) defi ned by (x, y) ∈ g iff y = (g ⊆ Z x Q), and let f be a function on Z defi ned by (x, y) ∈ f iff y = 5x + 2x – 3 (f ⊆ Z x Z ). Which one of the following statements regarding the function g is TRUE? (Remember, g ⊆ Z x Q.) a. g can be presented as a straight line graph. b. g is injective. c. g is surjective. d. g is bijective. + 4x − 3/7 + + 2 + + + Which one of the following alternatives gives the format for the list notation of a. (((a, a), a), ((a, b), d), ((a, c), c), ((a, d), b), ((b, a), b), ((b, b), a), ((b, c), d), ((b, d), a), ((c, a), c), ((c, b), b), ((c, c), a), ((c, d),c), ((d, a), d), ((d, b), b), ((d, c), c), ((d, d), a)) b. {((a, a), a), ((a, b), d), ((a, c), c), ((a, d), b), ((b, a), b), ((b, b), a), ((b, c), d), ((b, d), a), ((c, a), c), ((c, b), b), ((c, c), a), ((c, d),c), ((d, a), d), ((d, b), b), ((d, c), c), ((d, d), a)} c. {{(a, a), a}, {(a, b), d}, {(a, c), c}, {(a, d), b}, {(b, a), b}, {(b, b), a}, {(b, c), d}, {(b, d), {(c, a), c}, {(c, b), b}, {(c, c), a}, {(c, d), c},{(d, a), d}, {(d, b), b}, {(d, c), c}, {(d, d), a}} d. {({a, a}, a), ({a, b}, d), ({a, c}, c), ({a, d}, b), ({b, a}, b), ({b, b}, a), ({b, c}, d), ({b, d}, a), ({c, a}, c), ({c, b}, b), ({c, c}, a), ({c, d},c), ({d, a}, d), ({d, b}, b), ({d, c}, c), ({d, d}, a)} Question 9 Complete Marked out of 2.00 Question 10 Complete Marked out of 2.00 Which one of the following options regarding the binary operation * is FALSE? a. (a * b) * (c * d) = (a * (b * d)) * (d * c) b. (a * b) (b * a) can be used as a counterexample to prove that the binary operation * is not commutative. c. (a * b) * d = a * (b * d) proves that the binary operation * is associative. d. The binary operation * does not have an identity element. ≠ Let A = {□, ◊, ☼, ⌂} and let # be a binary operation from A X A to A presented by the following table: Which one of the following statements pertaining to the binary operation # is TRUE? a. is the identity element for #. b. # is symmetric (commutative). c. # is associative. d. [(⌂ # ◊) # ☼] = [⌂ # (◊ # ☼)] Question 11 Complete Marked out of 2.00 Question 12 Complete Marked out of 2.00 Consider the representation of the binary operation # below: # can be written in list notation. Which one of the following ordered pairs is an element of the list notation set representing #? a. ((□, ◊), ⌂) b. ((⌂, ☼), ◊) c. ((☼, ◊), ◊) d. ((⌂, ◊), ◊) Perform the following matrix multiplication operation: Which one of the following alternatives represents the correct answer to the above operation? a. The operation is not possible. b. c. d. Question 13 Complete Marked out of 2.00 Consider the following matrices: Which one of the following statements is FALSE? a. The result of B C is b. The result of A C is c. B C = C B d. The operation (C B) A is not possible. ∙ ∙ ∙ ∙ ∙ ∙ Question 14 Complete Marked out of 2.00 Consider the truth table for the connective ‘ ’ with two simple declarative statements p and q. (i) Which one of the given alternatives represents ‘‘ ’ as a binary operation on the set of truth values {T, F}? (ii) Does the binary operation ‘ ’ have an identity element? For each alternative, please look at (i) and (ii). a. (i) (ii) The binary operation ‘ ’ does not have an identity element. b. (i) (ii) The binary operation ‘ ’ has an identity element. c. (i) (ii) The binary operation ‘ ’ does not have an identity element. d. (i) (ii) The binary operation ‘ ’ has an identity element. ↔ ↔ ↔ ↔ ↔ ↔ ↔ Question 15 Complete Marked out of 2.00 Let p, q and r be simple declarative statements. Which alternative provides the truth values for the biconditional ‘ ’ of thecompound statement provided in the given table? Hint: Determine the truth values of p r, q ∨ r, (p r) ⋀ (q ∨ r), q p, ¬(q p) and ¬(q p) ⋀ r in separate columnsbefore determining the truth values of [(p r) ⋀ (q ∨ r}] [¬(q p) ⋀ r]. a. b. c. d. ↔ → → → → → → ↔ → Question 16 Complete Marked out of 2.00 Question 17 Complete Marked out of 2.00 Consider the following quantifi ed statement: ∀x ∈ Z [(x ≥ 0) ∨ (x + 2x – 8>0)] Which one of the alternatives provides a true statement regarding the given statement or its negation? a. The negation ∃x ∈ Z [(x < 0) ∨ (x + 2x – 8 ≤ 0)] is not true. b. x = – 3 would be a counterexample to prove that the negation is not true. c. x = – 6 would be a counterexample to prove that the statement is not true. d. The negation ∃x ∈ Z [(x < 0) ∧ (x + 2x – 8 ≤ 0)] is true. 2 2 2 2 2 2 Consider the following proposition: "For any predicates P(x) and Q(x) over a domain D, the negation of the statement ∃x ∈ D, P(x) ∧ Q(x)" is the statement "∀x ∈ D, P(x) ¬Q(x)". We can use this truth to write the negation of the following statement: "There exist integers a and d such that a and d are negative and a/d = 1 + d/a". Which one of the alternatives provides the negation of this statement? a. There exist integers a and d such that a and d are positive and a/d = 1 + d/a. b. For all integers a and d, if a and d are positive then a/d 1 + d/a. c. For all integers a and d, if a and d are negative then a/d 1 + d/a. d. For all integers a and d, a and d are positive and a/d 1 + d/a. → ≠ ≠ ≠ Question 18 Complete Marked out of 2.00 Question 19 Complete Marked out of 2.00 Question 20 Complete Marked out of 2.00 Which one of the alternatives is a proof by contrapositive of the statement If x – x + 4 is not divisible by 4, then x even. a. Required to prove: If x – x + 4 is not divisible by 4 then x even. Proof: Suppose x is odd. Let x = 2k + 1, then we have to prove that x – x + 4 is divisible by 4. x – x + 4 = (2k + 1) – (2k + 1) + 4 = (2k + 1)(4k + 4k +1) – 2k – 1 + 4 = 8k + 8k + 2k + 4k + 4k +1 – 2k – 1 + 4 = 8k + 12k + 4k + 4 = 4(2k + 3k + k + 1), which is divisible by 4. (4 multiplied by any integer is divisible by 4) b. Required to prove: If x – x + 4 is not divisible by 4, then x even. Proof: Assume that x – x + 4 is not divisible by 4. Then x can be even or odd. We assume that x is odd. Let x = 2k + 1, then x – x + 4 = (2k+1) – (2k + 1) + 4 = (2k + 1)(4k + 4k +1) – 2k – 1 + 4 = 8k + 8k + 2k + 4k + 4k +1 – 2k – 1 + 4 = 8k + 12k + 4k + 4 = 4(2k + 3k + k + 1), which is divisible by 4. (4 multiplied by any integer is divisible by 4) But this is a contradiction to our original assumption. Therefore x must be even if x – x + 4 is not divisible by 4. c. Required to prove: If x – x + 4 is not divisible by 4, then x even. Proof: Let x = 4 be an even element of Z. We can replace x with 4 in the expression x – x + 4. x – x + 4 = 64 – 4 + 4 = 64 which is divisible by 4. d. Required to prove: If x – x + 4 is not divisible by 4, then x even. Proof: Assume that x is even, i.e. x = 4k, then x – x + 4 = (4k) – (4k) + 4 = 64k – 4k + 4 = 4(16k – k + 1), which is divisible by 4. 3 3 3 3 3 2 3 2 2 3 2 3 2 3 3 3 3 2 3 2 2 3 2 3 2 3 3 3 3 3 3 3 3 3 By using logical equivalences and de Morgan’s rules, we can show that the statements ¬p ⋁ q and (p ⋀ ¬q) (¬p ⋁ q) are equivalent. a. True b. False → The statement [p ⋀ (r q)] [(r ⋁ q) ⋀ (p q)] is a contradiction. a. True b. False → ↔ → Question 21 Complete Marked out of 2.00 Question 22 Complete Marked out of 2.00 Question 23 Complete Marked out of 2.00 Question 24 Complete Marked out of 2.00 Consider the two statements below: Statement 1: ∀x Z , [(2x + 1 > 3) ⋁ (2x – 1 1)] Statement 2: ∃x Z, [(x – 1 < 0) ∧ (2x - 2 0)] It is true that both statements 1 and 2 are false? a. True b. False ∈ + 2 ≥ ∈ 2 ≥ Consider the following statement: ∀x Z, [(2x + 4 > 0) ⋁ (4 - x ≤ 0)] The negation of the above statement is: ¬[∀x Z, [(2x + 4 > 0) ⋁ (4 - x ≤ 0)]] ≡ ∃x Z, ¬[(2x + 4 > 0) ⋁ (4 - x ≤ 0)] ≡ ∃x Z, [¬(2x + 4 > 0) ∧ ¬(4 - x ≤ 0)] ≡ ∃x Z, [(2x + 4 ≤ 0) ∧ (4 - x > 0)] a. True b. False ∈ 2 ∈ 2 ∈ 2 ∈ 2 ∈ 2 Consider the statement If n is even, then 4n - 3 is odd. The contrapositive of the given statement is: If 4n - 3 is odd, then n is even. a. True b. False 2 2 Consider the statement If n is a multiple of 3, then 2n + 2 is not a multiple of 3. The converse of the given statement is: If n is not a multiple of 3, then 2n + 2 is a multiple of 3. a. True b. False Question 25 Complete Marked out of 2.00 Consider the following statement, for all x Z: If x + 1 is even, then 3x - 4 is odd. The correct way to start a direct proof to determine if the statement is true is as follows: Assume x is even, then x = 2k for some k Z, then 3x – 4 ie 3(2k) - 4 i.e. ……….. a. True b. False

Mostrar más Leer menos
Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
17 de julio de 2024
Número de páginas
34
Escrito en
2023/2024
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

COS1501
Assignment 3 2024
Unique #:653581
Due Date: 22 July 2024, 11:00 PM



Detailed solutions, explanations, workings
and references.

+27 81 278 3372

, UNISA  2024  COS1501-24-Y  Welcome Message  Assessment 3

QUIZ




Started on Wednesday, 17 July 2024, 8:26 PM
State Finished
Completed on Wednesday, 17 July 2024, 10:03 PM
Time taken 1 hour 36 mins


Question 1
Complete

Marked out of 2.00




Suppose U = {1, 2, 3, 4, 5, a, b, c} is a universal set with the subset A = {a, b, c, 1, 2, 3, 4}.
Which one of the following relations on A is NOT functional?


a. {(1, 3), (b, 3), (1, 4), (b, 2), (c, 2)}
b. {(a, c), (b, c), (c, b), (1, 3), (2, 3), (3, a)}
c. {(a, a), (c, c), (2, 2), (3, 3), (4, 4)}
d. {(a, c), (b, c), (1, 3), (3, 3)}




Question 2
Complete

Marked out of 2.00




Suppose U = {1, 2, 3, 4, 5, a, b, c} is a universal set with the subset A = {a, b, c, 1, 2, 3, 4}.
Which one of the following alternatives represents a surjective function from U to A?


a. {(1, 4), (2, b), (3, 3), (4, 3), (5, a), (a, c), (b, 1), (c, b)}
b. {(a, 1), (b, 2), (c, a), (1, 4), (2, b), (3, 3), (4, c)}
c. {(1, a), (2, c), (3, b), (4, 1), (a, c), (b, 2), (c, 3)}
d. {(1, a), (2, b), (3, 4), (4, 3), (5, c), (a, a), (b, 1), (c, 2)}
$3.04
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Reseñas de compradores verificados

Se muestran los comentarios
1 año hace

4.0

1 reseñas

5
0
4
1
3
0
2
0
1
0
Reseñas confiables sobre Stuvia

Todas las reseñas las realizan usuarios reales de Stuvia después de compras verificadas.

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
VarsityC AAA School of Advertising
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
28681
Miembro desde
8 año
Número de seguidores
13258
Documentos
3117
Última venta
5 días hace

4.1

2819 reseñas

5
1490
4
581
3
392
2
117
1
239

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes